• 제목/요약/키워드: T-S neuro-fuzzy control

검색결과 6건 처리시간 0.023초

Neuro-Fuzzy Control of Inverted Pendulum System for Intelligent Control Education

  • Lee, Geun-Hyung;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.309-314
    • /
    • 2009
  • This paper presents implementation of the adaptive neuro-fuzzy control method. Control performance of the adaptive neuro-fuzzy control method for a popular inverted pendulum system is evaluated. The inverted pendulum system is designed and built as an education kit for educational purpose for engineering students. The educational kit is specially used for intelligent control education. Control purpose is to satisfy balancing angle and desired trajectory tracking performance. The adaptive neuro-fuzzy controller has the Takagi-Sugeno(T-S) fuzzy structure. Back-propagation algorithm is used for updating weights in the fuzzy control. Control performances of the inverted pendulum system by PID control method and the adaptive neuro-fuzzy control method are compared. Control hardware of a DSP 2812 board is used to achieve the real-time control performance. Experimental studies are conducted to show successful control performances of the inverted pendulum system by the adaptive neuro-fuzzy control method.

이륜구동 이동로봇의 균형을 위한 뉴로 퍼지 제어 (Neuro-fuzzy Control for Balancing a Two-wheel Mobile Robot)

  • 박영준;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.40-45
    • /
    • 2016
  • This paper presents the neuro-fuzzy control method for balancing a two-wheel mobile robot. A two-wheel mobile robot is built for the experimental studies. On-line learning algorithm based on the back-propagation(BP) method is derived for the Takagi-Sugeno(T-S) neuro-fuzzy controller. The modified error is proposed to learn the B-P algorithm for the balancing control of a two-wheel mobile robot. The T-S controller is implemented on a DSP chip. Experimental studies of the balancing control performance are conducted. Balancing control performances with disturbance are also conducted and results are evaluated.

Fuzzy-Neuro Controller for Speed of Slip Energy Recovery and Active Power Filter Compensator

  • Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.480-480
    • /
    • 2000
  • In this paper, we proposed a fuzzy-neuro controller to control the speed of wound rotor induction motor with slip energy recovery. The speed is limited at some range of sub-synchronous speed of the rotating magnetic field. Control speed by adjusting resistance value in the rotor circuit that occurs the efficiency of power are reduced, because of the slip energy is lost when it passes through the rotor resistance. The control system is designed to maintain efficiency of motor. Recently, the emergence of artificial neural networks has made it conductive to integrate fuzzy controllers and neural models for the development of fuzzy control systems, Fuzzy-neuro controller has been designed by integrating two neural network models with a basic fuzzy logic controller. Using the back propagation algorithm, the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the control speed of a wound rotor induction motor process. The control system is designed to maintain efficiency of motor and compensate power factor of system. That is: the proposed controller gives the controlled system by keeping the speed constant and the good transient response without overshoot can be obtained.

  • PDF

터보제트엔진의 퍼지제어기 설계 및 다목적함수 만족기법을 통한 제어성능 향상에 관한 연구 (A Study on the Design of Fuzzy Controller for a Turbojet Engine Model and its Performance Enhancement through Satisfactory Multiple Objectives)

  • 한동주
    • 한국항공우주학회지
    • /
    • 제31권6호
    • /
    • pp.61-71
    • /
    • 2003
  • 터보제트엔진 모델에 대한 제어에 있어서, 비교적 잘 설계된 PI 제어기 성능결과를 바탕으로 Takagi-Sugeno형 뉴로-퍼지 추론계를 통한 플랜트 모델의 제어 시스템을 규명함으로서, PI형 T-S 퍼지규칙들을 퍼지제어기를 설계하였다. 이렇게 설계된 제어기의 성능을 향상시키기 위하여, 각 퍼지규칙들을 퍼지 C-Means Algorithm으로부터 각각의 목적 함수군으로 분류한 후, 각 분류군에 대해 규칙간의 가중치가 각 목적함수의 만족도에 부합되도록 하는 기법을 제시하였고, 이를 잘 설계된 T-S형 퍼지제어기에 적용하여 성능을 향상시킴으로써 그 유용성을 보였다.

클러스터링 기반 뉴로-퍼지 모델링 학습 (Neuro-Fuzzy Modeling Learning method based on Clustering)

  • 김승석;곽근창;이대종;김성수;유정웅;김주식;김용태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.289-292
    • /
    • 2005
  • 본 논문에서는 클러스터링과 뉴로-퍼지 모델링을 동시에 실시하는 학습 기법을 제안하였다. 클러스터링을 이용하여 뉴로-퍼지 모델링을 실시하는 일반적인 경우, 클러스터링 학습을 실시한 후 학습된 파라미터를 뉴로-퍼지 모델의 초기 파라미터로 설정하고 모델을 다시 학습하는 방법을 취한다. 즉 클러스터링에서 클러스터의 수를 구하고 파라미터를 최적화함으로써 초기 구조동정과 파라미터 동정을 실시하며 이를 다시 뉴로-퍼지 모델에서 세부적인 파라미터 동정을 실시하는 것이다. 또한 모델에서의 학습은 출력데이터의 오차를 이용한 오차미분기반 학습으로 전제부 소속함수 파라미터를 수정하는 방법을 이용한다. 이 경우 클러스터링의 영향과 모델의 영향이 각각 별개로 고려될 수 있다. 따라서 본 논문에서는 클러스터링을 전제부 소속함수로 부여하고 클러스터링의 학습에 뉴로-퍼지 모델을 이용하면서 또한 모델의 학습에 클러스터링을 직접 적용하는 클러스터링 기반 뉴로-퍼지 모델링을 제안하였으며 이 경우 클러스터링의 학습과 모델의 학습이 동시에 이루어지며 뉴로-퍼지 모델에서 클러스터링의 효과를 직접적으로 확인할 수 있다. 제안된 방법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

적응형 네트워크 기반 퍼지추론 시스템을 적용한 갑천유역의 홍수유출 모델링 (The Application of Adaptive Network-based Fuzzy Inference System (ANFIS) for Modeling the Hourly Runoff in the Gapcheon Watershed)

  • 김호준;정건희;이도훈;이은태
    • 대한토목학회논문집
    • /
    • 제31권5B호
    • /
    • pp.405-414
    • /
    • 2011
  • 본 연구에서는 유역에서 관측되는 강우량과 유출량의 시계열 자료를 바탕으로 최근 시계열 예측 및 시스템 제어 분야에서 성공적으로 적용되고 있는 적응형 네트워크 기반 퍼지추론 시스템(ANFIS)을 갑천 유역에 적용하여 시유출량을 모델링하였다. 입력구조, 소속함수 종류와 개수 등을 다양하게 변화시켜 ANFIS 모형을 학습하고, 평균제곱근오차(RMSE), 평균첨두유량오차(PE) 및 평균첨두시간오차(TE)를 이용하여 ANFIS의 유출해석에 대한 적용성을 평가하였다. 현재시간의 시유출량 Q(t)에 대한 ANFIS의 적용성은 우수한 것으로 평가되었으며, ANFIS 모형은 관측유출량을 적절히 모의하였다. 입력구조가 다른 입력모형을 구성하여 최대 8시간까지 ANFIS의 유출예측 적용성을 평가하였다. 예측시간 증가에 따라서 ANFIS의 유출예측 정확도는 감소하여 예측시간 4시간 이상의 시유출량에 대한 ANFIS의 유출예측 적용성은 제한적이었다. ANFIS는 입력과 출력 자료들만 이용하므로 물리기반 모형에 비교하여 모형구축이 비교적 손쉽기 때문에 홍수 유출모델링에 ANFIS을 유용하게 적용할 수 있을 것으로 판단된다.