• 제목/요약/키워드: T-S gradient diagram

검색결과 2건 처리시간 0.015초

Analysis of haline channel formed in the East China Sea and the Atlantic Ocean using the T-S gradient diagram

  • Kim, Juho;Kim, Hansoo;Paeng, Dong-Guk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.208-216
    • /
    • 2014
  • In case of any coastal ocean near the mouth of huge rivers, low salinity water can be formed due to its large amount of freshwater discharge. For the acoustic analysis on the low salinity environment, some oceanographic data of the East China Sea and the Atlantic Ocean were collected through KODC (Korea Oceanographic Data Center) and NODC (National Oceanographic Data Center) online service. In this paper, the T-S gradient diagram is introduced to show a relation between the gradients of temperature and salinity in view of acoustic surface channel formation. Existence of haline channel, quantitative contribution of gradients of salinity and temperature, effectiveness of the channel formation can be known by the T-S gradient diagram. After applying the collected data into the diagram, tropical regions of the Atlantic Ocean show strong haline channel due to its nearly invariant temperature and drastic change of salinity with depth. The averaged transmission loss in the channel is about 5.7 ~ 7.5 dB less than that out of the channel by the results of acoustic propagation model (RAM: Range independent Acoustic Model). On the other hand, the East China Sea and temperate region of the Atlantic ocean have weaker haline channel with less difference of the averaged transmission loss between in and out of the channel as 3.2 ~ 6.0 dB. Although data samples used in this study have limitation to represent the general physical structures of the three ocean regions, the T-S gradient diagram is shown to be useful and acoustic field affected by low salinity environment is investigated in this study.

여수연안 정치망 어장의 환경요인과 어항 변동에 관한 연구 (Environmental Factors and Catch Fluctuation of Set-Net Grounds in the Coastal Waters of Yeosu)

  • 김동수;노홍길
    • 수산해양기술연구
    • /
    • 제29권1호
    • /
    • pp.1-10
    • /
    • 1993
  • In order to investigate the environmental properties of set net grounds located in the coastal waters of Yeosu, oceanographic observations on the fishing grounds were carried out by the training ship of Yeosu Fisheries University from Jun. 1988 to Dec. 1990. The resultes obtained are summarized as follows; 1) The water mass in the fishing grounds were divided into the inner water (29.50-31.00$\textperthousand$), the mixed water (31.10-32.70$\textperthousand$) and the offshore water (32.70-34.30$\textperthousand$) according to the distribution of salinity from T-S diagram plotted all salinity data observed from Jun. 1988 to Dec. 1990. In spring the mixing water prevailed and in summer the inner and mixing water. But in autumn and winter the mixing and offshore waters prevailed. 2) The inner water which was formed by land water from the river of Somjin and the precipitation in the Yeosu district flowed southerly along the coast of Dolsando and spread south-easterly in the vicinity of Kumodo. The inner water and offshore water which supplied from the vicinity of Sorido and Yokchido formed the thermal front and halofront. 3) As the mixing water flowing from the western sea of Cheju to the southern coast of korea was low in temperature, the water mass of low temperature which appeared at the offshore bottom of Sorido in summer was considered not to be the Tsushima warm current. 4) As vertical mixing was made frequently in spring, autumn and winter, the differences in temperature and salinity between surface and bottom was respectively small. In summer, however, the mixing was not made because of the inner water expanded offshore through the space between surface and 10m layer and so a thermocline of $2.0^{\circ}C$/10m and halocline of 4.0$\textperthousand$/10m respectively in vertical gradient was formed. 5) In the vicinity of Dolsando and Kum a water low in salinity prevailed, but in the vicinity of Namhaedo and YoKchido the reverse took place. The inner and mixing waters formed at these arease was limited to the observation area not to spread widely.

  • PDF