• Title/Summary/Keyword: T-F masking

Search Result 2, Processing Time 0.022 seconds

Performance comparison evaluation of real and complex networks for deep neural network-based speech enhancement in the frequency domain (주파수 영역 심층 신경망 기반 음성 향상을 위한 실수 네트워크와 복소 네트워크 성능 비교 평가)

  • Hwang, Seo-Rim;Park, Sung Wook;Park, Youngcheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.30-37
    • /
    • 2022
  • This paper compares and evaluates model performance from two perspectives according to the learning target and network structure for training Deep Neural Network (DNN)-based speech enhancement models in the frequency domain. In this case, spectrum mapping and Time-Frequency (T-F) masking techniques were used as learning targets, and a real network and a complex network were used for the network structure. The performance of the speech enhancement model was evaluated through two objective evaluation metrics: Perceptual Evaluation of Speech Quality (PESQ) and Short-Time Objective Intelligibility (STOI) depending on the scale of the dataset. Test results show the appropriate size of the training data differs depending on the type of networks and the type of dataset. In addition, they show that, in some cases, using a real network may be a more realistic solution if the number of total parameters is considered because the real network shows relatively higher performance than the complex network depending on the size of the data and the learning target.

Mask Patterning for Two-Step Metallization Processes of a Solar Cell and Its Impact on Solar Cell Efficiency (태양전지 2 단계 전극형성 공정을 위한 마스크 패턴공정 및 효율에 대한 영향성 연구)

  • Lee, Chang-Joon;Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1135-1140
    • /
    • 2012
  • Two-step metallization processes have been proposed to achieve high-efficiency silicon solar cells, where the front-side grids are formed by silver plating after the formation of a nickel seed layer with a mask. Because the conventional mask patterning process is performed by an expensive selective printing method using either UV resist or phase change ink, however, the combination of a simple coating and laser-selective ablation processes is proposed in this study as an alternative means. As a masking material, the solar cell wafer was coated with either inexpensive wax having a low melting temperature or a fluorocarbon solution, and then, an electrode image was patterned by selectively removing the masking material using the laser. It was found that the fluorocarbon coating was not only superior to the wax coating in terms of pattern uniformity but it also increased the efficiency of the solar cell by 0.16%, as confirmed by statistical f and t tests.