• Title/Summary/Keyword: T-A formulation

Search Result 341, Processing Time 0.032 seconds

Digital Forensics: Review of Issues in Scientific Validation of Digital Evidence

  • Arshad, Humaira;Jantan, Aman Bin;Abiodun, Oludare Isaac
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.346-376
    • /
    • 2018
  • Digital forensics is a vital part of almost every criminal investigation given the amount of information available and the opportunities offered by electronic data to investigate and evidence a crime. However, in criminal justice proceedings, these electronic pieces of evidence are often considered with the utmost suspicion and uncertainty, although, on occasions are justifiable. Presently, the use of scientifically unproven forensic techniques are highly criticized in legal proceedings. Nevertheless, the exceedingly distinct and dynamic characteristics of electronic data, in addition to the current legislation and privacy laws remain as challenging aspects for systematically attesting evidence in a court of law. This article presents a comprehensive study to examine the issues that are considered essential to discuss and resolve, for the proper acceptance of evidence based on scientific grounds. Moreover, the article explains the state of forensics in emerging sub-fields of digital technology such as, cloud computing, social media, and the Internet of Things (IoT), and reviewing the challenges which may complicate the process of systematic validation of electronic evidence. The study further explores various solutions previously proposed, by researchers and academics, regarding their appropriateness based on their experimental evaluation. Additionally, this article suggests open research areas, highlighting many of the issues and problems associated with the empirical evaluation of these solutions for immediate attention by researchers and practitioners. Notably, academics must react to these challenges with appropriate emphasis on methodical verification. Therefore, for this purpose, the issues in the experiential validation of practices currently available are reviewed in this study. The review also discusses the struggle involved in demonstrating the reliability and validity of these approaches with contemporary evaluation methods. Furthermore, the development of best practices, reliable tools and the formulation of formal testing methods for digital forensic techniques are highlighted which could be extremely useful and of immense value to improve the trustworthiness of electronic evidence in legal proceedings.

Static and Dynamic Behavior of Disk Bearings under Railway Vehicle Loading (철도차량하중에 의한 디스크받침의 정·동적 거동특성)

  • Oh, Saeh Wan;Choi, Eun Soo;Jung, Hie Young;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.469-480
    • /
    • 2006
  • The goal of this study is to ases the static and dynamic behavior of disk bearings under railway vehicle loadings. Several static tests were conducted in a laboratory t bearings, all having the same kind of polyurethane disk as used in the static tests, were installed under a full-sized railway bridge and tested with a running locomotive, the tests results, the static and dynamic stiffness of the disk bearings were estimated and compared. the deformation of the disk bearings under the bridge was measured at varying disk bearing was almost half of that under dynamic loading. In addition, the dynamic stiffness of the fixed disk bearing was 80% higher than that of an expansion disk bearing, since the PTFE in the expansion bearing is displaced. The deformation of the disk bearing did not vary significantly with changes in locomotive's speed. The results of this study can contribute to fast-tracking the formulation of a design technique for disk bearings for railway bridges.

Relative Bioavailability of Coenzyme Q10 in Emulsion and Liposome Formulations

  • Choi, Chee-Ho;Kim, Si-Hun;Shanmugam, Srinivasan;Baskaran, Rengarajan;Park, Jeong-Sook;Yong, Chul-Soon;Choi, Han-Gon;Yoo, Bong-Kyu;Han, Kun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.99-105
    • /
    • 2010
  • The purpose of this study was to evaluate relative bioavailability of the coenzyme Q10 (CoQ10) in emulsion and three liposome formulations after a single oral administration (60 mg/kg) into rats. Emulsion formulation of CoQ10 was prepared by conventional method using Phospholipon 85G as an emulsifier, and three liposome formulations (neutral, anionic, and cationic) of CoQ10 were prepared by traditional lipid film hydration technique using Phospholipon 85G, cholesterol, and charge carrier lipids (1,2-dioleoyl-3-trimethylammonium-propane chloride salt for cationic liposome and 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt for anionic liposome). Mean particle size of all CoQ10-loaded liposome was less than a micron, and size distribution of the liposome population was homogeneous. Bioavailability of CoQ10 in emulsion was 1.5 to 2.6-fold greater than liposome formulations in terms of $AUC_{0-24\;h}$. $T_{max}$ was 3 h when administered as emulsion while it was greater than 6 h in liposome formulations. Notably, it was approximately 8 h in cationic liposome. $C_{max}$ was highest in emulsion and was significantly decreased when administered as liposome. Charged liposome showed even lower $C_{max}$ than neutral liposome, especially in cationic liposome. In conclusion, therefore, it is suggested that clinicians and patients consider bioavailability issue a primary concern when choosing a CoQ10 product, especially when very high plasma level is required such as in the treatment of heart failure and Parkinson's disease.

Study on the Systematic Technology of Promoting Purification for the Livestock Wastewater and Reuse

  • Okada, Yoshiichi;Shim, Jae-Do;Mitarai, Masahumi;Kojima, Takayuki;Gejima, Yoshinori
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.692-700
    • /
    • 1996
  • The objective of this study is to develop a systematic purification plant using the metabolism of aerobic microorganisms. This system is subsequently aerated and continuously removes suspended solids and settling sludges caused by aerating pressure at the bottom of a lower pipe (i.e., Continuous Removal of Suspended solids and Settling sludges, CRSS). The CRSS plants are brought out by introducing fine air bubbles into the liquid phase of a lower pipe in the bio-reactor. These plant uses aeration pipe, with multiple inlets to sweep the floor of bio-reactor tank, instead of the conventional scraper mechanisms. The principal advantage of this system is that it can continuously remove very small or light particles that settles completely within a short time. Once the particles have been floated to the surface, they can be moved into the pipe and collected in the settling tank by sequently aerated pressure. The experimental results shows that about 99.0% of the biochemical oxygen demand(BOD), 99.3% of the suspended solid(SS), 92.3% of the total nitrogen(T-N), 99.0% of the turbidity(TU), 100% of the total coliform(TC)and ammonia was respectively removed during aerobic digestion for 9 days. These result indicates that the CRS S plants are very effective for reduction and deodorization of swine wastewater contaminants, and the efflux from CRS S can either be discharged in the river or used as nutrient solution of formulation for plant growth factories. The developed CRSS plant proved to be flexible and it can simply be adapted to any type of biological waste treatment problem.roblem.

  • PDF

Pharmacokinetic Behavior and Biodistribution of Paclitaxel-Loaded Lipid Nanosuspension

  • Choi, Sung-Up;Park, Jung-Min;Choi, Woo-Sik;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.359-366
    • /
    • 2009
  • In this study, paclitaxel-loaded lipid nanosuspension (PxLN) was prepared and the in vivo profiles after intravenous administration in rats were investigated. We compared the manufacturing processes depending on the temperature: PxLN-H for a hot homogenization process and PxLN-C for solidification of lipid-drug mixtures by liquid nitrogen. Both formulations showed submicron size distribution and the similar drug loading efficiency of about 70%. In vitro release of PxLNs and Taxol$^{(R)}$ performed by a dialysis diffusion method showed similar pattern for PxLN-H and Taxol$^{(R)}$, but the reduced release profile for PxLN-C. PxLN or Taxol$^{(R)}$ was intravenously administered to the rats at a dose of 5 mg/kg as paclitaxel. The drug in blood samples were assayed by the HPLC/MS/MS method. The AUC$_t$ of PxLN-H was 3.4-fold greater than that of Taxol$^{(R)}$. PxLN-H gave higher biodistribution in all tissues than did Taxol$^{(R)}$. In addition, it maintained the higher drug concentration for 12 h. This lipid nanosuspension might be a promising candidate for an alternative formulation for the parenteral delivery of poorly water-soluble paclitaxel.

A Study on Vulcanization Reaction of Modified Rubber Blends Using Dynamic Differential Scanning Calorimetry (Dynamic DSC를 이용한 개질 고무 블랜드의 가황 반응에 관한 연구)

  • Lee, Seung-Hyun;Ahn, Won-Sool
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.326-333
    • /
    • 2003
  • Even though many studies have been reported about rubber vulcanization, it is still remained difficult to find a quantitative relationship between the final states of vulcanized rubber and initial formulation or processing conditions. Dynamic differential scanning calorimetry (DSC) method is known as a comparatively easy method to research for the rubber vulcanization in both experimental and analysis. In the present research, a study on the vulcanization reaction of NR/CB composites modified by isoprene(IR) and chloroprene(CR) rubbers is carried out using dynamic DSC method. Thermograms with several different heating rates were obtained and analyzed using the Kissinger method. Analysis showed that the vulcanization reaction was progressed through the first order reaction mechanism. In addition, the reaction temperature was severely influenced by the kinds or rubber modifiers, in this case, more influenced by CR than by IR. Those effects were clearly verified in the values of activation energy. Kinds of carbon blacks, however, could hardly influence on the reaction mechanism.

Pharmacokinetics and Bioequivalence of Haloperidol Tablet by Liquid Chromatographic Mass Spectrometry with Electrospray Ionization

  • Yun Min-Hyuk;Kwon Jun-Tack;Kwon Kwang-il
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.488-492
    • /
    • 2005
  • The purpose of this study is to investigate the bioequivalence of two haloperidol 5 mg tablets, Myung In haloperidol (Myung In Pharm. Co., Ltd., test drug) and $Peridol^{R}$(Whanin Pharm. Co., Ltd., reference drug), and also to estimate the pharmacokinetic parameters of haloperidol in Korean volunteers. The bioavailability and pharmacokinetics of haloperidol tablets were examined on 24 healthy volunteers who received a single oral dose of each preparation in the fasting state in a randomized balanced 2 way crossover design. After an oral dosing, blood samples were collected for a period of 60 h. Plasma concentrations of haloperidol were determined using a liquid chromatographic electrospray mass spectrometric (LC-MS) method. The pharmacokinetic parameters were calculated with noncompartmental pharmacokinetic analysis. The geometric means of $AUC_{0-60h} and C_{max}$ between test and reference formulations were $17.21\pm8.26 ng\cdot/mL vs 17.31\pm13.24 ng\cdot/mL and 0.87\pm0.74 ng/mL vs 0.85\pm0.62 ng/mL$. respectively. The $90\%$ confidence intervals of mean difference of logarithmic transformed $AUC_{0-60h} and C_{max} were log0.9677{\sim}log1.1201 and log0.8208{\sim}log1.1981$, respectively. It shows that the bioavailability of test drug is equivalent with that of reference drug. The geometric means of other pharmacokinetic parameters ($AUC_{inf}. t_{1/2}, V_{d}/F, and CL/F$) between test drug and reference drug were $21.75\pm8.50 ng{\cdot}h/mL vs 21.77\pm15.63 ng{\cdot}h/mL, 29.87\pm8.25 h vs 29.60\pm7.56 h, 11.51\pm5.45 L vs 12.90\pm6.12 L and 0.26\pm0.09 L/h vs 0.31\pm0.17 L/h$, respectively. These observations indicate that the two formulation for haloperidol was bioequivalent and, thus, may be clinically interchangeable.

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.

The Relationships of Major Satisfaction, Self-Esteem and Nursing Professionalism of the Nursing College Students (간호대학생의 전공만족도, 자아존중감 및 전문직관과의 관계)

  • Lim, Sun Young;Kim, So Young;Choi, Hye Mi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.1 no.2
    • /
    • pp.45-51
    • /
    • 2015
  • This study investigates the relationship among major satisfaction, self-esteem and nursing professionalism of the students majoring in nursing. The purpose of this paper is to seek the movement of the direction of nursing education in order to improve the formulation, major satisfaction, and self-esteem of the nursing professionalism for the nursing students. This study provides you with the survey conducted among 195 people attending and nursing students as a correlation research. Data collection period was from October 1, 2014 to October 31, and Data were analyzed by t-values. Correlation coefficient using the SPSS Program 18.0. Major satisfaction and self-esteem of the nursing college students shows a correlation between net. Therefore, development and application of educational programs have to be necessary to improve the nursing students' self-esteem and a desirable professional intuition.

An improved modal strain energy method for structural damage detection, 2D simulation

  • Moradipour, Parviz;Chan, Tommy H.T.;Gallag, Chaminda
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.105-119
    • /
    • 2015
  • Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.