• Title/Summary/Keyword: T Cell Population

Search Result 251, Processing Time 0.031 seconds

The association of PBX1 polymorphisms with overweight/obesity and metabolic alterations in the Korean population

  • Ban, Ju-Yeon;Kang, Soon-Ah;Jung, Kyung-Hee;Kim, Hak-Jae;Uhm, Yoon-Kyung;Kim, Su-Kang;Yim, Sung-Vin;Choe, Bong-Keun;Hong, Seung-Jae;Seong, Yeon-Hee;Koh, In-Song;Chung, Joo-Ho
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • Pre-B-cell leukemia transcription factor 1 (PBX1), which is located on chromosome 1q23, was recently reported to be associated with type 2 diabetes mellitus. We examined whether single nucleotide polymorphisms (SNPs) of the PBX1 gene are associated with overweight/obesity in a Korean population. We genotyped 66 SNPs in the PBX1 gene and investigated their association with clinical phenotypes found in 214 overweight/obese subjects and 160 control subjects using the Affymetrix Targeted Genotyping chip array. Seven SNPs (g.+75l86C>T, g.+78350C>A, g.+80646C>T, g.+138004C>T, g.+185219G>A, g.+191272A>C, and g.+265317T>A) were associated with the risk of obesity in three models (codominant, dominant, and recessive) (P=0.007-0.05). Haplotype 1 (CAC) and 3 (TAC) of block 3 and haplotype 2 (GGAAT) of block 10 were also strongly associated with the risk of obesity. In the control group, subjects that had homozygote for the major allele for both g.+185219G>A and g.+191272A>C showed lower high density lipoprotein-cholesterol (HDL-C) level compared to those possessing the minor allele, suggesting that the association between the homozygote for the major allele for both g.+185219G>A and g.+191272A>C and HDL-C is attributable to the increased risk of obesity. This study suggests that the PBX1 gene is a possible risk factor in overweight/obese patients.

Trichinella spiralis Infection Suppressed Gut Inflammation with $CD4^+CD25^+Foxp3^+$ T Cell Recruitment

  • Cho, Min Kyoung;Park, Mi Kyung;Kang, Shin Ae;Choi, Seon Hee;Ahn, Soon Cheol;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.4
    • /
    • pp.385-390
    • /
    • 2012
  • In order to know the effect of pre-existing Trichinella spiralis infection on experimentally induced intestinal inflammation and immune responses, we induced colitis in T. spiralis-infected mice and observed the severity of colitis and the levels of Th1, Th2, and regulatory cytokines and recruitment of $CD4^+CD25^+Foxp3^+$ T (regulatory T; $T_{reg}$) cells. Female C57BL/6 mice were infected with 250 muscle larvae; after 4 weeks, induction of experimental colitis was performed using 3% dextran sulfate sodium (DSS). During the induction period, we observed severity of colitis, including weight loss and status of stool, and evaluated the disease activity index (DAI). A significantly low DAI and degree of weight loss were observed in infected mice, compared with uninfected mice. In addition, colon length in infected mice was not contracted, compared with uninfected mice. We also observed a significant increase in production of pro-inflammatory cytokines, IL-6 and IFN-${\gamma}$, in spleen lymphocytes treated with DSS; however, such an increase was not observed in infected mice treated with DSS. Of particular interest, production of regulatory cytokines, IL-10 and transforming growth factor (TGF)-${\beta}$, in spleen lymphocytes showed a significant increase in mice infected with T. spiralis. A similar result was observed in mesenteric lymph nodes (MLN). Subsets of the population of $T_{reg}$ cells in MLN and spleen showed significant increases in mice infected with T. spiralis. In conclusion, T. spiralis infection can inhibit the DSS-induced colitis in mice by enhancing the regulatory cytokine and $T_{reg}$ cells recruitment.

A Experimental Study of PTEN (Phosphatase and Tensin) Role in Mesothelioma (중피종에서 PTEN(Phosphatase and Tensin)의 역할에 대한 실험적 연구)

  • 이석기;김권천
    • Journal of Chest Surgery
    • /
    • v.36 no.11
    • /
    • pp.852-857
    • /
    • 2003
  • Background: Conventional treatment for mesothelioma is largely ineffective. We evaluated the novel approach of adenoviral gene transfection of PTEN gene in mesothelioma cancer cell lines, inflammatory and epithelial subtype, which are sensitive to adenoviral p53. Material and Method: Binary adenoviral PTEN and LacZ (Ad/GT-LacZ and Ad/GV16) vectors were used for transduction of the mesothelioma cell lines, REN (p53 sensitive). Protein levels were determined by Western blotting assay. Apoptosis was assessed by fluorescence-activated cell sorter analysis of subdiploid populations. Cell viability was determined with the XTT assay. Statistical analysis was performed with analysis of variance and the Student t test. Result: 72 hours after the treatment of adenoviral PTEN gene, cell killing were 32.9% for REN compared to control cell (2.5%) at MOI of 20. Also we observed the over-expression of proapoptotic protein, bax and decreased expression of bcl-2 protein in REN cells. But the expression of BCL-xl, Bak, Bad proteins were not altered. Conclusion: Adenovirus Pten-mediated overexpression of the Bax gene induces apoptosis and decreased cellular viability in p53-sensitive mesothelioma cells. These data suggest that the transfection of PTEN gene may represent a alternative gene therapy strategy to treat mesothelioma.

Transduction of eGFP Gene to Human Embryonic Stem Cells and Their Characterization (인간 배아줄기세포로의 eGFP 유전자 도입 및 특성 분석)

  • Kim, Yoon-Young;Ku, Seung-Yup;Park, Yong-Bin;Oh, Sun-Kyung;Moon, Shin-Yong;Choi, Young-Min
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.4
    • /
    • pp.283-292
    • /
    • 2009
  • Objective: Human embryonic stem cells (hESCs) can proliferate indefinitely and differentiate into all kinds of cell types in vitro. Therefore, hESCs can be used as a cell source for cell-based therapy. Transduction of foreign genes to hESCs could be useful for tracing differentiation processes of hESCs and elucidation of gene function. Thus, we tried to introduce enhanced green fluorescent protein (eGFP) gene to hESCs, XX and XY cell lines in this study. Methods: Lentivirus containing eGFP was packaged in 293T cells and applied to hESCs to transduce eGFP. Expression of transduced eGFP was evaluated under the fluorescence microscope and eGFP positive population was analyzed by FACS. Expression of undifferentiation state markers such as Oct4, Nanog, SSEA4 and Tra-1-81 was examined by RT-PCR and/or immunofluorescence in eGFP-hESCs after transduction. In addition, the ability of eGFP-hESCs to form embryoid bodies (EBs) was tested. Results: eGFP was successfully transduced to hESCs by lentivirus. eGFP expression was stably maintained up to more than 40 passages. eGFP-hESCs retained expression patterns of undifferentiation state markers after transduction. Interestingly, disappearance of transduced eGFP was notably observed during spontaneous differentiation of eGFP-hESCs. Conclusion: We established eGFP expressing hESC lines using lentivirus and showed the maintenance of undifferentiation characteristics of these eGFP-hESCs. This reporter-containing hESCs could be useful for tracing the processes of differentiation of hESCs and other studies.

The Activities and Characteristics of Algicidal Bacteria in Chindong Bay (진동만의 살조세균의 동태와 살조 특성)

  • KIM Mu Chan;YU Hong Sik;OK Mi Sun;KIM Chang Hoon;CHANG Dong Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.359-367
    • /
    • 1999
  • For investigating the activities of algicidal bacteria, the variations of algicidal bacterial population and chlorophyll-a were checked weekly in Chindong Bay, Korea from May to July, 1998. For identifying their killing characteristics, three strains were selected from the isolated algicidal bacteria. The density of algicidal bacteria kept changing in the range of $6.0\times10^1$ to $6.4\times10^5$ cell $\ell^{-1}$. The density flux of algicidal bacteria coincided with that of chlorophyll-a by a week of lag time. Three algicidal bacteria isolated from field strains, H519S5-4, H605S5-15 and H605S5-22, were investigated in nine microalgal species, Heterosigma akashiwo, Chattonella sp. (Raphidlphyceae), Gymnodinium catenatum, Gyrodinium impudicum, Cochlodinium polyklikoides (Dinophyceae), Chaetoceros sp., Coscinodiscus granii, Ditylum brightwellii, Thalassiosira rotula (Bacillariophyceae). Strain H605S5-22 showed a wide algicidal activities over nine microlgae, strain H605S5-15 over H. akashiwo, G. catenatum, T. rotula, Chattonella sp. and strain H519S5-4 over H. akashiwo, Chattonella sp., Chaetoceros sp., G. catenatum. The activities of the three strains were detected by the secretion of algicidal substances. Therefore, it is suggested that the activities of algicidal bacteria have a significant influence over the population dynamics of phytoplankton and get involved with the sharp decrease in red tides in the coastal area.

  • PDF

Vaccines against periodontitis: a forward-looking review

  • Choi, Jeom-Il;Seymour, Gregory J.
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.4
    • /
    • pp.153-163
    • /
    • 2010
  • Periodontal disease, as a polymicrobial disease, is globally endemic as well as being a global epidemic. It is the leading cause for tooth loss in the adult population and has been positively related to life-threatening systemic diseases such as atherosclerosis and diabetes. As a result, it is clear that more sophisticated therapeutic modalities need to be developed, which may include vaccines. Up to now, however, no periodontal vaccine trial has been successful in satisfying all the requirements; to prevent the colonization of a multiple pathogenic biofilm in the subgingival area, to elicit a high level of effector molecules such as immunoglobulin sufficient to opsonize and phagocytose the invading organisms, to suppress the induced alveolar bone loss, or to stimulate helper T-cell polarization that exerts cytokine functions optimal for protection against bacteria and tissue destruction. This article reviews all the vaccine trials so as to construct a more sophisticated strategy which may be relevant in the future. As an innovative strategy to circumvent these barriers, vaccine trials to stimulate antigen-specific T-cells polarized toward helper T-cells with a regulatory phenotype (Tregs, $CD_{4+}$, $CD_{25+}$, $FoxP_{3+}$) have also been introduced. Targeting not only a single pathogen, but polymicrobial organisms, and targeting not only periodontal disease, but also periodontal disease-triggered systemic disease could be a feasible goal.

Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondii based on calcium-dependent protein kinases antigens through an in-silico analysis

  • Ali Dalir Ghaffari;Fardin Rahimi
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.146-154
    • /
    • 2024
  • Purpose: Infection by the intracellular apicomplexan parasite Toxoplasma gondii has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world's population is infected with T. gondii, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against T. gondii using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5. Materials and Methods: Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct's N-terminal to increase the immunogenicity. Then, the vaccine's physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted. Results: The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against T. gondii parasite. Conclusion: In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.

Mesenchymal Stem Cell Lines Isolated by Different Isolation Methods Show Variations in the Regulation of Graft-versus-host Disease

  • Yoo, Hyun Seung;Yi, TacGhee;Cho, Yun Kyoung;Kim, Woo Cheol;Song, Sun U.;Jeon, Myung-Shin
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.133-140
    • /
    • 2013
  • Since the discovery of the immunomodulation property of mesenchymal stem cells (MSCs) about a decade ago, it has been extensively investigated whether MSCs can be used for the treatment of immune-related diseases, such as graft versus-host disease (GvHD). However, how to evaluate the efficacy of human MSCs for the clinical trial is still unclear. We used an MHC-mismatched model of GvHD (B6 into BALB/c). Surprisingly, the administration of the human MSCs (hMSCs) could reduce the GvHD-related mortality of the mouse recipients and xenogeneically inhibit mouse T-cell proliferation and $IFN-{\gamma}$ production in vitro. We recently established a new protocol for the isolation of a homogeneous population of MSCs called subfractionation culturing methods (SCM), and established a library of clonal MSC lines. Therefore, we also investigated whether MSCs isolated by the conventional gradient centrifugation method (GCM) and SCM show different efficacy in vivo. Intriguingly, clonal hMSCs (hcMSCs) isolated by SCM showed better efficacy than hMSCs isolated by GCM. Based on these results, the MHC-mismatched model of GvHD may be useful for evaluating the efficacy of human MSCs before the clinical trial. The results of this study suggest that different MSC lines may show different efficacy in vivo and in vitro.

Intradural Extramedullary and Subcutaneous Tumors in Neonate : Atypical Myxoid Spindle Cell Neoplasm

  • Yu, Dong-Woo;Choi, Joon-Hyuk;Lee, Eun-Sil;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.417-419
    • /
    • 2012
  • Tumors of the central nervous system are common in the pediatric population and constitute the second most prevalent tumor type in children. Within this group, spinal cord tumors are relatively rare and account for 1 to 10% of all pediatric central nervous system tumors. We describe a very rare case of an intradural extramedullary spinal cord tumor with a subcutaneous mass and discuss its clinical presentation, pathogenesis, and treatment. A male infant was delivered normally, with uneventful development. At 16 days post-delivery, his family took him to a pediatrician because of a mass on his upper back. Magnetic resonance imaging of the thoracic spine revealed a well-demarcated soft-tissue mass with central cystic change or necrosis at the subcutaneous layer of the posterior back (T2-7 level). Another mass was found with a fat component at the spinal canal of the T1-3 level, which was intradural extramedullary space. After six weeks, the spinal cord tumor and subcutaneous mass were grossly total resected; pathologic findings indicated an atypical myxoid spindle cell neoplasm, possibly nerve sheath in type. The final diagnosis of the mass was an atypical myxoid spindle cell neoplasm. The postoperative course was uneventful, and the patient was discharged after nine days without any neurological deficit. We report a rare case of an intradural extramedullary spinal tumor with subcutaneous mass in a neonate. It is necessary to monitor the patient's status by examining consecutive radiologic images, and the symptoms and neurological changes should be observed strictly during long-term follow-up.

Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs)

  • Nam, Sorim;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate $NF-{\kappa}B$ signaling. Moreover, expression of PD-L1 and CD80 on $PD-1^+$ MDSCs was higher than on $PD-1^-$ MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in $PD-1^+$ MDSCs than in $PD-1^-$ MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that $PD-1^+$ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.