• Title/Summary/Keyword: Systolic blood measurement

Search Result 151, Processing Time 0.026 seconds

Differences in Blood Pressure among Adults in the Community according to Blood Pressure Measurement Time and Age (지역사회 성인의 혈압측정횟수 및 연령에 따른 혈압의 차이)

  • Park, Kyung-Yeon
    • Journal of Korean Biological Nursing Science
    • /
    • v.21 no.4
    • /
    • pp.275-282
    • /
    • 2019
  • Purpose: This study aimed to identify the differences in blood pressure among adults in the community according to age and time of the blood pressure measurement. Methods: This was a secondary analysis study, using data from a 2015 community health survey, conducted by the Korea Centers for Disease Control and Prevention. The data of three-time-measured blood pressure were collected from 337 subjects, 25, 35, 45, 55, 65, 75 years old, which are median ages by each age group. Results: The primary systolic pressure was significantly higher than the secondary systolic pressure (t= 3.46, p= .001) and the tertiary systolic pressure (t= 4.83, p= .001). The secondary systolic pressure was higher than the tertiary measurement (t= 2.05, p= .041). There was no significant difference between the three-time-measured values for diastolic pressure. There was a significant interaction between measurement times and age in the systoic blood pressure readings (F= 1.95, p= .036). However, there was no significant interaction between measurement times and age in the diastolic blood pressure readings (F= 1.03, p= .418). Conclusion: The findings suggest that attention must be paid to the use of blood pressure values in studies or one-time-measured clinical blood pressure values. In particular, the differences in systolic pressure readings taken at different times in the older age groups were significant. Therefore, it is more important to carefully assess blood pressure in adults over the age of 45 compared to other age groups.

The Comparison of PTT and Systolic Blood Pressure in a hemorrhaged Rat (출혈을 일으킨 흰쥐에서의 PTT와 수축기 혈압 비교)

  • Shim, Young-Woo;Lee, Ju-Hyung;Yang, Dong-In;Kim, Deok-Won
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.138-140
    • /
    • 2009
  • Hemorrhage shock occupies high rate in trauma patient's mortality and blood pressure is the variance that judges early diagnosis and the effect of remedy. Systolic blood pressure is related to pulse transit time(PTT). PTT means the time that is required to flow from the heart to peripheral artery. PTT is influenced from the length, cross section and stiffness of the blood vessels. It is hard to evaluate the correlation between systolic blood pressure and PTT because they are variable in human body. In this paper, we evaluated the correlation between the systolic blood pressure and PTT in normal and hemorrhage states using standardized rat. PTT is defined as the time differences between the R peak and the peak of pulse wave. The analyzed time differences of ECG and blood pressure are analyzed every 5minutes for 30 seconds when there is before and after bleeding. Before bleeding, systolic blood pressure and PTT are steadily preserved but when the bleeding comes started, systolic blood pressure is declined. However PTT was increased and decreased. Under the circumstance that the standardized rat is controlled by age, the length of the blood vessels, and any disease, it shows that PTT measurement using systolic blood pressure of bleeding is impossible.

  • PDF

A Comparative Study of Blood Pressure According to Cuff Size and Measurement Site (커프크기와 측정부위에 따른 혈압측정치 비교 연구)

  • Song, Mi-Ryeong;Kim, Eun-Kyung
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.16 no.1
    • /
    • pp.6-13
    • /
    • 2009
  • Purpose: The purpose of this study was to identify differences in blood pressure according to cuff size and measurement sites of the participants. Method: The participants consisted of 50 women and 50 men whose upper arm circumference was $26\sim30cm$. They had no chronic illness and gave consent to participate. Blood pressure of the wrist was measured in the sitting position, the upper arm with a standard cuff, large and small cuffs were used for measurement in supine position and the thigh in prone position. The data were analyzed with paired t-test using SPSS 12.0 program. Result: The data for the upper arm showed a difference in systolic and diastolic blood pressure depending on the site of measurement. There was a significant difference between measurements with a standard cuff and measurements with large and small cuffs. The systolic blood pressure of the wrist and the thigh were significantly lower than that of the upper arm. Conclusion: These results suggest that the selection of an appropriate cuff is an essential element in ensuring accuracy when measuring blood pressure and differences in systolic blood pressure for the upper arm, wrist and thigh indicate the need to record the measuring site when measuring blood pressure.

  • PDF

Verification of Reliable Blood Pressure Monitor in a Moving Ambulance during an Emergency (응급상황시 이송중인 구급차에서 신뢰할 수 있는 혈압계 검증)

  • Jeon, Jai-In
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.91-97
    • /
    • 2022
  • The purpose of this study was to analyze the measurements of blood pressure and time using manual and automatic blood pressure monitors in various road conditions to verify reliable blood pressure monitor in a moving ambulance. First, the manual blood pressure monitor palpation on unpaved roads showed a systolic pressure deviation of 5 mmHg. However, the automatic blood pressure monitor showed two measurement failures, one reading failure, and the measured systolic pressure deviation was 35 mmHg. The measurement time was 102 seconds faster on average than the automatic blood pressure monitor. Second, the palpation of the manual blood pressure monitor while going over speed bumps remained constant at 130 mmHg. However, the automatic blood pressure monitor had a systolic pressure deviation of 52 mmHg. The measurement time was 61 seconds faster on average than the automatic blood pressure monitor. Finally, the manual blood pressure monitor palpation on the sharp curve road showed a systolic pressure deviation of 5 mmHg. The automatic blood pressure monitor had one reading failure and the measured systolic pressure deviation was 21 mmHg. The measurement time showed that the manual blood pressure monitor was 101 seconds faster than the automatic blood pressure monitor. As a result, in a moving ambulance during an emergency, the manual blood pressure monitor showed high reliability because the blood pressure measurement was constant and the measurement time was short.

The Development of a Cuff for the Accuracy Enhancement of the Sphygmomanometer

  • Kim, Won-Ki;Shin, Ki-Young;Mun, Joung-Hwan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.30-35
    • /
    • 2006
  • The purpose of this study is to develop a new cuff to improve the accuracy of blood pressure measurement, and to evaluate the performance of the developed system. We added a small bladder to the normal cuff, which we refer to as the double bladder system. The system that we developed for blood pressure measurement was based on the oscillometric method using a double bladder. This system was developed in order to reduce the oscillation noise and to amplify the signal of pure blood pressure. An oscillometric signal database based on the developed system was evaluated according to the ANSI/AAMI/SP10-1992 standard. The correlation coefficients between the cuff of the double bladder and the normal cuff were 0.98 for systolic pressure and 0.94 for diastolic pressure. The mean differences and the standard deviations between the average blood pressure obtained from a mercury manometer and that obtained from an automated sphygmomanometer were -0.7mmHg and 4.9mmHg for systolic, and -1.4mmHg and 5.4mmHg for diastolic pressure. We conclude that the proposed double bladder-based cuff system improves the accuracy of oscillometric blood pressure measurement. The developed system reduces the range of error by about $44{\sim}62%$ for systolic pressure and about $6{\sim}21%$ for diastolic pressure compared to the most recently developed, commercially available sphygmomanometers.

The Development of a Cuff for the Accuracy Enhancement of Sphygmomanometer (전자 혈압계의 정확도 향상을 위한 가압대 개발)

  • Kim Won Ki;Shin Ki Young;Mun Joung Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.181-188
    • /
    • 2005
  • The purpose of this study is to develop the new cuff improving the accuracy of blood pressure measurement, and to evaluate the performance of the developed system. We added a small bladder to the normal cuff which is called the double bladder system. The developed system for blood pressure measurement was based on the oscillometric method using a double bladder. This system was developed in order to reduce the oscillation noise and to amplify the signal of pure blood pressure An oscillometric signal database based on the developed system were evaluated following the standard ANSI/AAMI/SP10-1992. The correlation coefficients between cuff of double bladder and normal cuff were 0.98 for systolic and 0.94 for diastolic. Mean differences and the standard deviations between average blood pressure of mercury sphygmomanometer and automated sphygmomanometer were -0.7mmHg and 4.9mmHg for systolic, and -1.4mmHg and 5.4mmHg for diatolic, respectively. We conclude that the proposed double bladder based cuff system improves the accuracy of the oscillometric blood pressure measurement. The developed system reduces the error range about $44\~62\%$ for systolic and about $6\~21\%$ for diastolic compared to the recently developed commercially available sphygmomanometers.

Accuracy Comparison of Blood Pressure among the Direct Measurement Method and Two Automatic Indirect Measurement Methods in the Patients with Various Blood Pressure (다양한 혈압상태에서 직접혈압을 기준으로 HP 자동혈압기와 국산자동혈압기의 정확도 비교)

  • Song Hyo-Sook;Jun Tae-Gook;Choi Eun-Jung;Kim Mi-Jung
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.8 no.3
    • /
    • pp.366-378
    • /
    • 2001
  • Objective: The purpose of this study was to identify differences in measurement methods for blood pressure (Direct measurement, HP automatic indirect measurement, and SE 7000 Korean made indirect measurement), and to evaluate the clinical trial of the Korean made automatic indirect blood pressure measurement. Material & Methods: From June, 1999 to February, 2000, fifty five consecutive patients were randomized into hypertension group (n=20), normotension group (n=20), and hypotension group (n= 15). Measuring blood pressure by indirect methods (HP NIBP M 1008B and SE 7000 NIBP Korean made) was done simultaneously in the same arm with arterial line for direct blood pressure measurement (HP M1006A). The procedures were repeated ten times at intervals of 2 minutes. Statistical analysis was Performed using SPSS (version 8.0 for windows) software package. Values were expressed as means and standard deviation and means were compared using t-test. Statistical significance was considered present with a p value less than 0.05. Results: In the hypertension group and noromotension group, the disparity between HP direct measurement and indirect SE 7000 NIBP did not show any differences compared to the disparity between HP direct measurement and indirect HP NIBP. In the hypotension group, the disparity in the diastolic pressure between HP direct measurement and indirect SE 7000 NIBP was significantly different compared to the disparity between HP direct measurement and indirect HP NIBP (p<0.001), however, disparities in systolic pressure did not showed any differences. Conclusion: Direct blood pressure measurement (HP M1006A) can be replaced with indirect blood pressure measurements (HP NIBP M 1008B & SE 7000 NIBP) in normotension and hypertension patients. Korean made indirect measurement was found to be more accurate compared to HP indirect measurement in hypotension Patients, but more study is needed.

  • PDF

Automatic blood pressure measurement device using oscillometric method and Korotkoff sounds

  • Wei, Ran;Lim, Young Chul;Im, Jae Joong
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.20-25
    • /
    • 2012
  • The oscillometric method and Korotkoff sound method are the most common ways to measure the blood pressure. A new automatic blood pressure measurement device, which uses both oscillometric method and Korotkoff method, was developed. A pressure sensor was used to obtain cuff pressure and oscillation signal, and a microphone was used to detect Korotkoff sounds. Forty-five measurements from fifteen subjects were used for analysis. Correlation coefficients between the traditional auscultatory method and Korotkoff sound method were 0.9820 and 0.9721 for the systolic and diastolic blood pressure values, respectively. Standard deviations of differences for the systolic and diastolic blood pressure values were 1.3019 and 1.4495, respectively. Correspondingly, correlation coefficients between the traditional auscultatory method and oscillometric method using newly developed algorithm were 0.9651 and 0.9136 for the systolic and diastolic blood pressure values, with the standard deviations of 1.42 and 1.73, respectively. The results showed that the newly developed algorithm for oscillometirc method provide accurate blood pressure values, moreover, Korotkoff sound method using microphone provides even higher accuracy. Therefore, a new automatic device which utilizes both oscillometric method and Korotkoff sound method would provide the accurate and reliable blood pressure values.

A Study on Measurement of Blood Pressure by Partial Least Square Method (부분최소자승법을 이용한 혈압 측정에 관한 연구)

  • Kim, Yong-Joo;Nam, Eun-Hye;Choi, Chang-Hyun;Kim, Jong-Deok
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.438-445
    • /
    • 2008
  • The purpose of this study was to develop a measurement model based on PLS (Partial least square) method for blood pressures. Measurement system for blood pressure signals consisted of pressure sensor, va interface and embedded module. A mercury sphygmomanometer was connected with the measurement system through 3-way stopcock and used as reference of blood pressures. The blood pressure signals of 20 subjects were measured and tests were repeated 5 times per each subject. Total of 100 data were divided into a calibration set and a prediction set. The PLS models were developed to determine the systolic and the diastolic blood pressures. The PLS models were evaluated by the standard methods of the British Hypertension Society (BHS) protocol and the American Association for the Advancement of Medical Instrumentation (AAMI). The results of the PLS models were compared with those of MAA (maximum amplitude algorithm). The measured blood pressures with PLS method were highly correlated to those with a mercury sphygmomanometer in the systolic ($R^2=0.85$) and the diastolic blood pressure ($R^2=0.84$). The results showed that the PLS models were the effective tools for blood pressure measurements with high accuracy, and satisfied the standards of the BHS protocol and the AAMI.

Estimation of baroreflex sensitivity using pulse arrival time rather than systolic blood pressure measurement

  • Lee, Jong-Shill;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • Baroreflex sensitivity (BRS) is a parameter of the cardiovascular system that is reflected in changes in pulse interval (PD and systolic blood pressure (SBP). BRS contains information about how the autonomic nervous system regulates hemodynamic homeostasis. Normally the beat-to-beat SBP measurement and the pulse interval measured from the electrocardiogram (ECG) are required to estimate the BRS. We investigated the possibility of measuring BRS in the absence of a beat-to-beat SBP measurement device. Pulse arrival time (PAT), defined as the time between the R-peak of the ECG and a single characteristic point on the pulse wave recorded from any arterial location was measured by photoplethysmography. By comparing the BRS obtained from conventional measurements with our method during controlled breathing, we confirmed again that PAT and SBP are closely correlated, with a correlation coefficient of -0.82 to -0.95. The coherence between SBP and PI at a respiration frequency of 0.07-0.12 Hz was similar to the coherence between PAT and PI. Although the ranges and units of measurement are different (ms/mmHg vs. ms/ms) for BRS measured conventionally and by our method, the correlation is very strong. Following further investigation under various conditions, BRS can be reliably estimated without the inconvenient and expensive beat-to-beat SBP measurement.