• 제목/요약/키워드: Systems Engineering, SE

검색결과 778건 처리시간 0.025초

IEC 62267 안전요구사항을 적용한 무인경량전철 차량(K-AGT)의 시스템엔지니어링 프로세스에 관한 연구 (A study of unmanned light rail vehicle(K-AGT) system engineering process under Safety Requirement, IEC 62267)

  • 권상돈;이희성
    • 시스템엔지니어링학술지
    • /
    • 제9권1호
    • /
    • pp.1-11
    • /
    • 2013
  • In this study, unattended Light Rail Transit System (K-AGT) is a general-purpose standards safety requirements of IEC 62267 based System Engineering Process (SEP) was used. Functional analysis and physical architecting for each requirements through the vehicle was classified into sub-systems, design was analyzed in terms of SE. The analysis of the proposed system engineering process, unattended train operation (UTO), driverless train operation(DTO) design of the safety measures to be used as the basis is studied.

Analysis of Interference between UWB and ITS

  • Park, Se-Ho;Kim, Eun-Cheol;Kim, Jin-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제9권4호
    • /
    • pp.202-210
    • /
    • 2009
  • In this paper, we have analyzed the effect of interference between ultra-wideband(UWB) and intelligent transport systems(ITS). The maximum possible UWB emission power and minimum possible distance between UWB devices and ITS are found. In order to analyze the interference, we employ the Monte-Carlo(MC) method. We consider six situations, which are indoor office line-of-sight(LOS), indoor office non-line-of-sight(NLOS), indoor residential LOS, indoor residential NLOS, outdoor rural LOS, and outdoor rural NLOS environments. From the simulation results, it is confirmed that coexistence between UWB and ITS devices can be realized in accordance with the emission mask of 19.3 dB for indoor application or 19.3 dB for an image system. And in the outdoors, coexistence between UWB and ITS devices can be realized if the emission mask is at least 1.6 dB for vehicles' radar systems.

자동차 안전성 설계에서 설계 추적성을 활용한 고장형태 영향분석에 관한 연구 (On the Development of an FMEA Method for Automotive Safety Utilizing Design Traceability)

  • 임관택;이재천
    • 대한안전경영과학회지
    • /
    • 제15권1호
    • /
    • pp.11-19
    • /
    • 2013
  • In modern systems design and development, one of the key issues is considered to be related with how to reflect faithfully the stakeholder requirements including customer requirements therein, thereby successfully implementing the system functions derived from the requirements. On the other hand, the issue of safety management is also becoming greatly important these days, particularly in the operational phase of the systems under development. An approach to safety management can be based on the use of the failure mode effect and analysis (FMEA), which has been a core method adopted in automotive industry to reduce the potential failure. The fact that a successful development of cars needs to consider both the complexity and failure throughout the whole life cycle calls for the necessity of applying the systems engineering (SE) process. To meet such a need, in this paper a method of FMEA is developed based on the SE concept. To do so, a process model is derived first in order to identify the required activities that must be satisfied in automotive design while reducing the possibility of failure. Specifically, the stakeholder requirements were analyzed first to derive a set of functions, which subsequentially leads to the task of identifying necessary HW/SW components. Then the derived functions were allocated to appropriate HW/SW components. During this design process, the traceability between the functions and HW/SW components were generated. The traceability can play a key role when FMEA is performed to predict the potential failure that can be described with the routes from the components through the linked functions. As a case study, the developed process model has been applied in a project carried out in practice. The results turned out to demonstrate the usefulness of the approach.

데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측 (Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House)

  • 최락영;채영현;이세연;박진선;홍세운
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

복합체계 개념에 기반한 국방체계 모델링 시뮬레이션 방법론 (Modeling and Simulation Methodology for Defense Systems Based on Concept of System of Systems)

  • 김탁곤;권세중;강봉구
    • 대한산업공학회지
    • /
    • 제39권6호
    • /
    • pp.450-460
    • /
    • 2013
  • A complex system such as defense systems is in a form of System of Systems (SoS) in which each component is a system being independent of other component systems. Dynamical behavior of SoS is represented by a composition of behaviors of component systems. Thus, a M&S tool/environment would not be efficient for development of heterogeneous models nor for simulation in a centralized environment. Moreover, such an environment restricts reusability and composability. This paper presents an interoperation method for M&S of defense systems as SoS. The approach first develops component system models using tools, each specialized to M&S of each component system. It then interoperates such simulations together to simulate a whole system as SoS. HLA/RTI is employed for such interoperation, which is a DoD/IEEE standard to support interoperation. We will introduce a case study for interoperable simulation of defense systems, which consists of a wargame simulator and a communication simulator.

RFID 시스템 도입의 주요 장애요인 분류와 성공적 도입을 위한 가이드라인 (Classification of Major Barriers to the Application of RFID Systems and a Guideline for Successful Application)

  • 염세경;조성구
    • 대한안전경영과학회지
    • /
    • 제10권2호
    • /
    • pp.143-154
    • /
    • 2008
  • With the recent rapid growth of RFID technologies, the Application of RFID systems into the medical or the military industries as well as into the distribution and logistics industry are now attempted continuously. The government and private sectors plan to carry out various small and large scale projects related to RFID systems. However, many companies attempting to apply RFID systems applications into their organizations are encountering many several difficulties because of the lack of installation experience and the absence of an useful guideline. This paper focuses on identification and classification of typical barriers to the successful application of RFID systems according to the five-step method of system application process. Moreover a "barrier map" is produced by conducting a survey and interviews by specialists. In addition, a practical guideline to overcome such barriers is presented and discussed.

Statistical Approach to Analyze Vibration Localization Phenomena in Periodic Structural Systems

  • Shin Sang Ha;Lee Se Jung;Yoo Hong Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1405-1413
    • /
    • 2005
  • Malfunctions or critical fatigue problems often occur in mistuned periodic structural systems since their vibration responses may become much larger than those of perfectly tuned periodic systems. These are called vibration localization phenomena and it is of great importance to accurately predict the localization phenomena for safe and reliable designs of the periodic structural systems. In this study, a simple discrete system which represents periodic structural systems is employed to analyze the vibration localization phenomena. The statistical effects of mistuning, stiffness coupling, and damping on the vibration localization phenomena are investigated through Monte Carlo simulation. It is found that the probability of vibration localization was significantly influenced by the statistical properties except the standard deviation of coupling stiffness.

시스템 엔지니어링 적용 및 활성화를 위한 전산지원도구 인프라 구축 사례 (Case study of the Systems Engineering Tool Infra Construction for System Engineering Application and Vitalization)

  • 장재덕;최상택;김명호;박동주;김승환;최상욱
    • 시스템엔지니어링학술지
    • /
    • 제6권2호
    • /
    • pp.1-6
    • /
    • 2010
  • 본 논문은 시스템 엔지니어링 프로세스 및 방법론에 입각하여 조직의 시스템 엔지니어링 전산지원도구 인프라를 구축한 사례에 대해 제시한다. SE 표준 프로세스인 EIA-632를 기준으로 시스템 설계의 요구사항 정의 프로세스, 해결방안 정의 프로세스, 제품구현의 구현 프로세스, 기술평가의 시스템 분석 프로세스를 효율적으로 수행할 수 있도록 전산지원도구 인프라를 IBM 사의 Rational 제품들로 구축한 것을 보여주고, 각 프로세스 별 구축된 전산지원도구의 활용법을 보여준다.

  • PDF

스트랩다운 관성항법시스템의 초기정렬 알고리즘 구현 (Implementation of an Initial Alignment Algorithm for a Stapdown Inertial Navigation system)

  • 김종혁;문승욱;이시호;김세환;황동환;이상정;나성웅
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.138-145
    • /
    • 2000
  • In this paper an initial alignment algorithm for a strapdown inertial navigation system is implemented using a RISC CPU board. The algorithm computes roll pitch and yaw angles of the direction cosine matrix utilizing measured components of the specific force and earth rate when the navigation system is stationary. The coarse alignment algorithm is performed first and then the fine alignment algorithm containing a 3rd-order gyrocompass loop follows. The experimental set consists of an IMU a CPU board and a monitoring system Experimental results show that the implemented algorithm can be utilized in navigation systems.

  • PDF

Position Tracking Control of a Small Autonomous Helicopter by an LQR with Neural Network Compensation

  • Eom, Il-Yong;Jung, Se-Ul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1008-1013
    • /
    • 2005
  • In this paper, position tracking control of an autonomous helicopter is presented. Velocity is controlled by using an optimal state controller LQR. A position control loop is added to form a PD controller. To minimize a position tracking error, neural network is introduced. The reference compensation technique as a neural network control structure is used, and a position tracking error of an autonomous helicopter is compensated by neural network installed in the remotely located ground station. Considering time delays between an autonomous helicopter and the ground station, simulation studies have been conducted. Simulation results show that the LQR with neural network compensation performs better than that of the LQR itself.

  • PDF