• Title/Summary/Keyword: Systemic inflammatory marker

Search Result 13, Processing Time 0.018 seconds

Plasma Levels of High Molecular Weight Adiponectin are Associated with Cardiometabolic Risks in Patients with Hypertension (고혈압 환자에서 혈장 고분자량 아디포넥틴 농도와 심장-대사위험인자와의 관련성 연구)

  • Chung, Hye-Kyung;Shin, Min-Jeong
    • Journal of Nutrition and Health
    • /
    • v.41 no.8
    • /
    • pp.733-741
    • /
    • 2008
  • In the present study, we comprehensively examined the associations of plasma levels of total adiponectin and high molecular weight (HMW) adiponectin with the features of cardiometabolic risks including body fat distribution, dyslipidemia, insulin resistance and inflammatory markers in a cross-sectional study of 110 treated hypertensive patients. Blood lipid profiles, high sensitivity C-reactive protein (hsCRP) and homeostasis model assessment of insulin resistance (HOMA- IR) derived from fasting glucose and insulin concentrations were determined. Plasma levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6) and intercellular adhesion molecule-1 (ICAM-1) were analyzed using ELISA. The results showed that plasma levels of HMW-adiponectin were negatively associated with body mass index (BMI, r = - 0.203, p < 0.05) and waist circumference (r = -0.307, p < 0.01), which was not shown in total adiponectin. Plasma levels of HMW-adiponectin were negatively associated with triglyceride (r = -0.223, p < 0.05) and positively associated with HDL-cholesterol (r = 0.228, p < 0.05). Plasma levels of adiponectin were positively associated with HDL-cholesterol (r = 0.224, p < 0.05). Plasma levels of HMW-adiponectin were negatively associated with hsCRP (r = -0.276, p < 0.01) and IL-6 (r = -0.272, p < 0.01). In addition, there were weak associations between plasma levels of HMWadiponectin and TNF-${\alpha}$ (r = -0.163, p = 0.07) and ICAM-1 (r = -0.158, p = 0.09). However, there were no significant associations of total adiponectin with inflammatory markers except hsCRP (r = -0.203, p < 0.05). Stepwise multiple linear regression analysis showed that only plasma levels of HMW-adiponectin was an independent factor influencing serum levels of hsCRP, a marker of systemic low grade inflammation, after adjusting for age, gender, BMI, waist circumference, alcohol intake, smoking status, blood lipids, total adiponectin and drug use (p < 0.01). These results suggest that HMW-adiponectin, rather than total adiponectin, is likely to be closely associated with the features of cardiometabolic risks in treated hypertensive patients and might be effective biomarker for the prediction of cardiovascular disease.

Drug Interaction between Ginseng Extract (GE) and Sorafenib (쏘라페닙과 홍삼추출물간의 약물상호작용)

  • Lee, Nam-Hee;Park, Ho-Jae;Rho, Ja-Sung;Kim, Mi-Kyung;Lee, Yu-Kyoung;Cho, Eun-A;Heo, Jeong;Cho, Mong;Hwang, Tae-Ho
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1518-1525
    • /
    • 2011
  • Sorafenib is the only approved systemic, therapeutic agent for hepatocellular carcinoma (HCC). The use of Ginseng Extract (GE) in cancer patients is growing worldwide; however, drug interaction between sorafenib and GE has not been illuminated. Four different human cancer cell lines including HepG2 were used and immunocompetent mice were implanted subcutaneously with a mouse HCC cell line. Treatment with low dose GE stimulated cell growth, while a high dose inhibited growth. pERK (phosphorylation of extracellular signal-regulated kinase) was concomitantly increased and decreased respective of different doses of GE. Antitumoral effect of sorafenib decreased in non-proliferating phase cells but was sensitized after low dose GE (LDG) treatment. PD98059 (ERK phosphorylation inhibitor) efficiently blocked ERK phosphorylation, resulting in loss of sorafenib sensitization even after LDG treatment. In the HCC mouse model, LDG alone slightly increased tumor size while sorafenib alone significantly decreased it. However, a combination of LDG and sorafenib significantly decreased tumor size compared with sorafenib alone. Increase of pERK was observed in some normal mice organs and mild inflammatory change was observed in some of these organs, suggesting pERK activation by LDG may cause unexpected toxicity in normal cells. GE, dose-dependently, induced stimulation or inhibition in some human cancer cell lines. Combinational use of GE and sorafenib possibly potentiated an antitumoral response to sorafenib. pERK level has been provided as a potential predictive marker for sorafenib. Our result may suggest GE's dual effects in relation to pERK level in HCC cancer cell lines, and that certain doses of GE can sensitize sorafenib.

The Effects of Prostaglandin and Dibutyryl cAMP on Osteoblastic Cell Activity and Osteoclast Generation (Prostaglandin과 Dibutyryl cAMP가 조골세포의 활성과 파골세포 형성에 미치는 영향)

  • Mok, Sung-Kyu;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.448-468
    • /
    • 1996
  • To maintain its functional integrity, bone is continuously remodelled by a process involving resorption by osteoeclasts and formation by osteoblasts, In order to respond to changes in the physical environment or to trauma with the relevant action, this process is strictly regulated by locally synthesized or systemic fators, Prostaglandin $E_2(PGE_2$) is perhaps one of the best studied factors, having been known to affect bone cell function for several decades.$PGE_2$ has both anabolic and catabolic activities. Excess of $PGE_2$ has been implicated in a number of pathological states associated with bone loss in a number of chronic inflammatory conditions such as periodontal disease and rheumatoid arthritis. $PGE_2$ and other arachidonic acid metabolites have been shown to be potent stimulators of osteoclastic bone resorption in organ culture. The anabolic effects of $PGE_2$ were first noticed when an increase in periosteal woven bone formation was seen after the infusion of $PGE_2$ into infants in order to prevent closure of the ductus arteriosus. The cellular basis for the catabolic actions of $PGE_2$ has been well characterized. $PGE_2$increases osteoclast recruitment in bone marrow cell cultures. Also $PGE_2$ has a direct action on osteoclast serving to inhibit activity and can also indirectly activate osteoclast via other cells in the vicinity, presumably osteoblast. The cellular mechanisms for the anabolic actions of $PGE_2$ are not nearly so well understood. The purpose of this paper was to study the effects of $PGE_2$ and dibutyl(DB)cAMP on osteoblastic clone MC3T3El cells and on the generation of osteoclasts from their precursor cells. The effect of $PGE_2$ and DBcAMP on the induction of alkaline phoaphatase(AlP) was investigated in osteoblastic clone MC3T3El cells cultured in medium containing 0.4% fetal bovine serum. $PGE_2$ and DBcAMP stimulated ALP activity and MTT assay in the cells in a dose-dependent manner at concentrations of lO-SOOng/ml. Cycloheximide, protein synthesis inhibitor, inhibited the stimulative effect of $PGE_2$ and DBcAMP on ALP activity in the cells. $PGE_2$also increased the intracellular cAMP content in a dose-dependent fashion with a maximal effect at 500ng/ml. The effect of $PGE_2$ on the generation of osteoclasts was investigated in a coculture system of mouse bone marrow cells with primary osteoblastic cells cultured in media containing 10% fetal bovine serum.After cultures, staining for tartrate-resistant acid phosphatase(TRAP)-marker enzyme of osteoclast was performed. The TRAP(+) multinucleated cells(MNCs), which have 3 or more nuclei, were counted. More TRAP(+) MNCs were formed in coculture system than in control group. $PGE_2(10^{-5}10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in culture. $PGE_2(10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in coculture of osteoblastic clone MC3T3E1 cells This results suggest that $PGE_2$ stimulates the differentiation of osteoblasts and generation of osteoclast, and are involved in bone formation, as well as in bone resorption.

  • PDF