• Title/Summary/Keyword: Systematic label noise

Search Result 2, Processing Time 0.013 seconds

Towards Improved Performance on Plant Disease Recognition with Symptoms Specific Annotation

  • Dong, Jiuqing;Fuentes, Alvaro;Yoon, Sook;Kim, Taehyun;Park, Dong Sun
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.38-45
    • /
    • 2022
  • Object detection models have become the current tool of choice for plant disease detection in precision agriculture. Most existing research improves the performance by ameliorating networks and optimizing the loss function. However, the data-centric part of a whole project also needs more investigation. In this paper, we proposed a systematic strategy with three different annotation methods for plant disease detection: local, semi-global, and global label. Experimental results on our paprika disease dataset show that a single class annotation with semi-global boxes may improve accuracy. In addition, we also studied the noise factor during the labeling process. An ablation study shows that annotation noise within 10% is acceptable for keeping good performance. Overall, this data-centric numerical analysis helps us to understand the significance of annotation methods, which provides practitioners a way to obtain higher performance and reduce annotation costs on plant disease detection tasks. Our work encourages researchers to pay more attention to label quality and the essential issues of labeling methods.

Decoding Brain States during Auditory Perception by Supervising Unsupervised Learning

  • Porbadnigk, Anne K.;Gornitz, Nico;Kloft, Marius;Muller, Klaus-Robert
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.112-121
    • /
    • 2013
  • The last years have seen a rise of interest in using electroencephalography-based brain computer interfacing methodology for investigating non-medical questions, beyond the purpose of communication and control. One of these novel applications is to examine how signal quality is being processed neurally, which is of particular interest for industry, besides providing neuroscientific insights. As for most behavioral experiments in the neurosciences, the assessment of a given stimulus by a subject is required. Based on an EEG study on speech quality of phonemes, we will first discuss the information contained in the neural correlate of this judgement. Typically, this is done by analyzing the data along behavioral responses/labels. However, participants in such complex experiments often guess at the threshold of perception. This leads to labels that are only partly correct, and oftentimes random, which is a problematic scenario for using supervised learning. Therefore, we propose a novel supervised-unsupervised learning scheme, which aims to differentiate true labels from random ones in a data-driven way. We show that this approach provides a more crisp view of the brain states that experimenters are looking for, besides discovering additional brain states to which the classical analysis is blind.