• Title/Summary/Keyword: System- Level Simulation

Search Result 2,155, Processing Time 0.05 seconds

System Level Network Simulation of Adaptive Array with Dynamic Handoff and Power Control (동적 핸드오프와 전력제어를 고려한 적응배열 시스템의 네트워크 시뮬레이션)

  • Yeong-Jee Chung;Jeffrey H. Reed
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.33-51
    • /
    • 1999
  • In this study, the system level network simulation is considered with adaptive array antenna in CDMA mobile communication system. A network simulation framework is implemented based on IS-95A/B system to consider dynamic handoff, system level network behavior, and deploying strategy into the overall CDMA mobile communication network under adaptive array algorithm. Its simulation model, such as vector channel model, adaptive beam forming antenna model, handoff model, and power control model, are described in detail with simulation block. In order to maximize SINR of received signal at antenna, Maximin algorithm is particularly considered, and it is computed at each simulation snap shot with SINR based power control and handoff algorithm. Graphic user interface in this system level network simulator is also implemented to define the simulation environments and to represent simulation results on real mapping system. This paper also shows some features of simulation framework and simulation results.

  • PDF

System Level Simulation of CDMA Network with Adaptive Array

  • Chung, Yeong-Jee;Lee, Jae-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.755-764
    • /
    • 1999
  • In this study, the system level network simulation is considered with adaptive array antenna in CDMA mobile communication system. A network simulation framework is implemented based on IS-95A/B system to consider dynamic handoff, system level network behavior, and deploying strategy into the overall CDMA mobile communication network under adaptive array algorithm. Its simulation model, such as vector channel model, adaptive beam forming antenna model, handoff model, and power control model, are described in detail with simulation block. In order to maximize SINR of received signal at antenna, maximin algorithm is particularly considered, and it is computed at each simulation snap shot with SINR based power control and handoff algorithm. Graphic user interface in this system level network simulator is also implemented to define the simulation environments and to represent simulation results on real mapping system. This paper also shows some features of simulation framework and simulation results.

  • PDF

HLA/RTI based on the Simulation Composition Technology (HLA/RTI 기반의 시뮬레이션 조합 기술)

  • Kim, Jingyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.244-251
    • /
    • 2016
  • In defense domain, mission level and engagement level simulation tools exist. In order to experiment a simulation scenario for obtaining results of both mission level and engagement level simulations, we should write a same simulation scenario in a mission level simulation tool as well as an engagement level simulation tool, and we have to operate these tools for analysis of each purpose. Moreover, we could not guarantee that these scenarios are completely same since each scenario is composed of different fidelities of simulation models, although the scenarios are written by a same experimenter and with same simulation purpose. To deal with the difficulties, I propose an approach to analysis of both mission level and engagement level simulations from one simulation result. For this, I have built Composite Combat Mission Planning Simulation Environment (CCMPSE). In this paper, the HLA/RTI based simulation composition technology and my experiences for the designed Composite Combat Mission Planning Simulation Control System (CCMPSCS) are explained. Moreover, This paper also conducts a case study with EADSIM, SADM, and the CCMPSCS. Finally, this paper provides lesson learned from the case study.

Interference Investigation between WCDMA TDD System and cdma2000 System by Link-level Simulation and System-level Simulation (링크 레벨 시뮬레이션과 시스템 레벨 시뮬레이션에 의한 WCDMA TDD시스템과 cdma2000시스템 간의 상호간섭분석)

  • 차인석;장경희;김성진;최용석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.21-30
    • /
    • 2004
  • The capacity of WCDMA TDD system is limited mainly by the interference. So, to achieve the expected performance of WCDMA TDD system and to minimize the interference to cdma2000 system interferences, such as interference within WCDMA TDD system inter-cell interference, and interferences between cdma2000 systems, should be considered carefully. In this paper, by using System-level Simulation, we analyzed the interferences between WCDMA TDD system and cdma2000 system in practical situation based on the exact parameters of 3GPP TR 25.942 and by using System-level Simulation considering Link-level we analyze the interferences between WCDMA TDD system and cdam2000 system. From Simulation Results, we propose the condition for optimizing system capacity considering the interferences between WCDMA TDD system & cdam2000 system

System-level simulation of CDMA mobile station modem ASIC (CDMA 이동국 모뎀 ASIC의 시스템 시뮬레이션)

  • 남형진;장경희;박경룡;김재석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.220-229
    • /
    • 1996
  • We presetn sytem-level simulation methodology as well as environment setup established for CDMA digtial cellular mobile station in an effort to verify CDMA modem ASIC design. To make the system-level simulation feasible, behavioral modeling of a microcontroller was first carried out with VHDL. In addition, models written in C language were also developed to provide ASIC with realistic input data. Finally, the netlist of CDMA modem ASIC was loaded on the a hardware accelerator, which was interfaced with VHDL simulator, and ismulation was performed by excuting the actual CDMA call processing software. Simulation resutls thus obtained were confirmed by comparing them with the emulation resutls from the actual system constructed on hardware modeler. these methods were proved to be effective in both discovering in advance malfunctions when embedded in the system or design errors of ASIC and reducing simulation time by a factor of as much as 20 in case of simulation at gate-level.

  • PDF

OPTIMIZATION OF THE PARAMETERS OF FEEDWATER CONTROL SYSTEM FOR OPR1000 NUCLEAR POWER PLANTS

  • Kim, Ung-Soo;Song, In-Ho;Sohn, Jong-Joo;Kim, Eun-Kee
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.460-467
    • /
    • 2010
  • In this study, the parameters of the feedwater control system (FWCS) of the OPR1000 type nuclear power plant (NPP) are optimized by response surface methodology (RSM) in order to acquire better level control performance from the FWCS. The objective of the optimization is to minimize the steam generator (SG) water level deviation from the reference level during transients. The objective functions for this optimization are relationships between the SG level deviation and the parameters of the FWCS. However, in this case of FWCS parameter optimization, the objective functions are not available in the form of analytic equations and the responses (the SG level at plant transients) to inputs (FWCS parameters) can be evaluated by computer simulations only. Classical optimization methods cannot be used because the objective function value cannot be calculated directely. Therefore, the simulation optimization methodology is used and the RSM is adopted as the simulation optimization algorithm. Objective functions are evaluated with several typical transients in NPPs using a system simulation computer code that has been utilized for the system performance analysis of actual NPPs. The results show that the optimized parameters have better SG level control performance. The degree of the SG level deviation from the reference level during transients is minimized and consequently the control performance of the FWCS is remarkably improved.

Efficient System Level Simulation Method for MIMO-OFDM System (MIMO-OFDM 시스템을 위한 효율적인 시스템 레벨 시뮬레이션 기법)

  • Kim, Min-Hoon;Ko, Young-Chai;Jeon, Tae-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.77-85
    • /
    • 2009
  • This paper proposes an efficient system level simulation method for MIMO-OFDM based system in the multi-cell environment. The proposed method analyzes effects of the cell structure, radio channel characteristics and user mobility. The user mobility effect on the system level performance is considered in both channel gain and distance. The receiver SINR calculation procedure is presented in the system which adopts MIMO-OFDM scheme under various system environments. This method can be flexibly extensible to various system environments and provides computationally efficient system level simulation technique which utilizes link level performance analysis. Extensive computer simulations results are presented to obtain the system performance in the various mobile cellular channels using the proposed method. Also this results are analyzed based on the packet error rate for different distances between the base station located in the center of the cell and the mobile user.

Development of the Distributed Real-time Simulation System Based on HLA and DEVS (DEVS형식론을 적응한 HLA기반의 분산 실시간 시뮬레이션 시스템 개발)

  • Kim, Ho-Jeong;Lee, Jae-Hyun;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • Weapon systems composed of several subsystems execute various engagement missions in distributed combat environments in cooperation with a large number of subordinate/adjacent weapon systems as well as higher echelons through tactical data links. Such distributed weapon systems require distributed real-time simulation test beds to integrate and test their operational software, analyze their performance and effects of cooperated engagement, and validate their requirement specifications. These demands present significant challenges in terms of real-time constraints, time synchronization, complexity and development cost of an engagement simulation test bed, thus necessitate the use of high-performance distributed real-time simulation architectures, and modeling and simulation techniques. In this paper, in order to meet these demands, we presented a distributed real-time simulation system based on High Level Architecture(HLA) and Discrete Event System Specification(DEVS). We validated its performance by using it as a test bed for developing the Engagement Control System(ECS) of a surface-to-air missile system. The proposed technique can be employed to design a prototype or model of engagement-level distributed real-time simulation systems.

The Simulation of Single Phase Multi-Level Converter which can control the SOC of Lithium-Ion Battery Units (리튬이온 배터리의 SOC 제어가 가능한 단상 멀티레벨 컨버터 시뮬레이션)

  • Kim, Jae-Hong;Kim, Eel-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.122-128
    • /
    • 2011
  • This paper proposes a new control scheme of lithium ion battery units based on single phase multi-level converter. In the DC/AC converter applications using battery storage system, it is necessary to control the balancing voltage of individual battery units for high efficiency utilization. Using the proposed control scheme, the DC/AC single phase converter system is applied. To verify the effectiveness of the proposed control scheme, computer simulation is accomplished. In the computer simulation, lithium-ion battery units and single phase multi-level converter system are modeled and carried out using Psim simulation program. It will be helpful for design and applications of energy storage system with lithium-ion battery.

System Theoretic Representation of UI System and DEVS Modeling (시스템 형식론에 의한 사용자 인터페이스 시스템 표현과 DEVS 모델링)

  • 김은하;조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.137-154
    • /
    • 1999
  • In this paper, we propose a software design method that will track the effects of modifications in a component to the rest of the components in the design phase. The prediction of the effects due to the design modifications before coding can be a valuable aid for the complex and large software development. Within the method, the target system is represented by the structured I/O system level specification which is one of the system representation level defined by the system theory. Then it is abstracted to the I/O system level. The DEVS (Discrete Event System Specification) model is constructed based on tile I/O system level specification. Finally, the DEVS model is simulated to generate the behavior of the software by the abstract simulator in DEVS simulation environment. As an application, the graphic user interface system of a metal grating production scheduling system is presented.

  • PDF