• Title/Summary/Keyword: System operation line

Search Result 1,503, Processing Time 0.032 seconds

A Study on Three Parallel Operation Control Algorithm of Thyristor Dual Converter System for Urban Railway Substation (도시 철도용 사이리스터 듀얼 컨버터 시스템의 3병렬 운전 제어 기법에 관한 연구)

  • Kim, Sung-An;Han, Sung-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.459-467
    • /
    • 2017
  • An urban railway power substation consists of three thyristor dual converters. Two converters are connected to up and down trolley line to supply the electric energy or feed the regenerative energy back to the distribution. When the two converters break down, the remaining converter is used in an emergency. One thyristor dual converter system (TDCS) manages the energy of two or three railway stations. If the TDCS fails, the trains stop operating. To solve the problem, this paper proposes the three parallel operation control algorithm of thyristor dual converter system using the emergency converter. The broken TDCS can be replaced by the emergency converter in other TDCS. The effectiveness of this proposed control is verified by simulation.

A Study on a Tram Signal Priority Strategy for Commercialization of the On-Board Oriented Train Control System (차상중심 열차제어시스템 실용화를 위한 트램 우선신호 전략 연구)

  • Baek, Jong-Hyen;Sung, Yu-Suk;Kim, Gonyop;Choi, Hyeon Yeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1493-1500
    • /
    • 2015
  • For efficient and economical train operation in low-density railway line, on-board oriented train control system, which reduces expensive wayside equipment, is being developed. In this paper, we discuss a tram signal priority strategy which enables efficient and safe train operation when the developing system is applied to train-tram railway environment. Based on the well-known transit signal priority strategies, we develop a tram signal priority algorithm and conduct simulations by using model-based systems engineering (MBSE) tool. Various considerations such as operation procedure, linkage to existing road traffic system, applicability with respect to crossroad types, and so on, are also dealt with.

Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system (고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계)

  • Lee, Seok-Joo;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF

A Study on the Control Algorithm and its Improvement of ATC System (자동열차제어장치의 제어알고리즘 분석과 개량방안에 관한 연구)

  • Kim Jong-ki;Joung Eui-Jin;Kim Baek-hyun;Shin Duck-ho;Lee Ki-seo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1300-1303
    • /
    • 2004
  • Using AF(Audio Frequency) track circuits to control block signal automatically. ATC(Automatic Train Control) system employed in urban transit 3/4 line, Gwacheon-line, Bundang-line and Ilsan-line pursues the safety of train operation. ATC is employed as important means for the safety. in which the distance between trains is controlled to satisfy the safety requirement. In this paper, we analyze the control algorithm of ATC and investigate the improvement plan of urban transit driving control mode to guarantee the automatic driving function.

  • PDF

Multiple Regression Analysis between Weather Factor and Line Outage using Logit Model (로짓(Logit) 모델을 이용한 날씨요소와 송전선로 고장의 다중회귀분석)

  • Shin, Dong-Suk;Lee, Youn-Ho;Kim, Jin-O;Lee, Baek-Seok;Bang, Min-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.187-189
    • /
    • 2004
  • This paper investigates the effect of weather factors(such as winds, rain, snows, temperature, clouds and humidity) on transmission line outages. The result shows that weather variables have significant effects on the transmission line historical outages and the relationship between them is nonlinear. Multiple regression analysis using Logit model is proved to be appropriate in forecasting line failure rate in KEPCO systems. It could also provide system operators with useful informations about system operation and planing.

  • PDF

Statistical Correction Analysis between Transmission Line Outage Data and Weather Effect in KEPCO Systems (송전선로 고장실적과 날씨와의 통계적 상관관계 분석)

  • Shin Dong Suk;Kim Jin O;Cha Seung Tae;Jeon Dong Hoon;Choo Jin Bu
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.391-393
    • /
    • 2004
  • Transmission line outage is influenced by several weather factors: wind, rain snow, temperature, cloud and humidity. So, in this paper try to see how much each weather factors have effect on the transmission line outage and it is analyzed that which weather variables have close relation with transmission line historical outage data in KEPCO systems. These statistic correlation analysis may provide system operators useful information about system operation and planing.

  • PDF

Comparative Analysis of Voltage Unbalance Factor on the use of Linear and Non-linear loads in Three-phase Four-wire Low Voltage Distribution Line (3상 4선식 저압 배전선로에서 선형 및 비선형 부하의 사용시 전압 불평형률 비교 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.587-592
    • /
    • 2017
  • In the three-phase four-wire low-voltage power distribution equipment, single-phase and three-phase load have been used mainly mixed. Also linear and nonlinear loads have been used together in the same conditions. In a three-phase four-wire distribution line, the current distribution of three-phase linear load is almost constant in each phase during driving or stopping, but the single-phase load is different from each other for each phase in accordance with the operation and stop. So that the voltage unbalance is caused by the current difference of each phase. In the three-phase four-wire distribution system, non-linear load is used with linear load. The presence of single-phase nonlinear loads can produce an increase in harmonic currents in three-phase and neutral line. It can also cause voltage unbalance. In the present study, we analyzed for the voltage unbalance fluctuations by the operation pattern of the single and three-phase linear and non-linear load in three-phase four-wire low voltage distribution system.

Standard Work Process to Reduce a Risk of Track Exchange Work for Railroad (철도 운행선 변경작업의 리스크 저감을 위한 표준작업 프로세스 도출)

  • Yoon, Chang Geun;Park, Su Yeul;Kim, Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.6
    • /
    • pp.131-137
    • /
    • 2021
  • Since many resources are put into the work of changing the railway operation within limited time, it is important to have a specific work plan and safety management. For this reason, the work schedule is shared in advance, and parallel work is being carried out simultaneously by rail system, such as tracks, trolly wires, and signals. However, due to the nature of the transfer work, the work is carried out at night when the railway operation is finished, and many resources are put into the limited area of the operating line, so the risk of safety accidents and failure to change the operating line is recognized as high. Nevertheless, there is still not enough research done in korea regarding the operation line change construction. Therefore, this study is conducted a survey on the track exchange work of railroad for working people, and analyzed the results of the survey. Finally, a standard work process was suggested to reduce the risk of track exchange work.

An Analysis of Influence Between the Power Feeding Line Insulation and Negative Rail Potential for the DC Ground Fault Protection in the Rubber Wheel System (고무차륜시스템에서의 지락보호를 위한 급전선로 절연과 부극전위와의 영향 분석)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Young;Cho, Sanghoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.577-583
    • /
    • 2013
  • We have analyzed influence of potential rise in negative bus, which caused by decrease of power feeding line insulation, upon protecting method of DC ground protection device which detecting potential rise between negative bus and ground in order to detect ground fault in the rubber wheel system. For this purpose, we proposed negative potential equation between negative bus and ground and calculated negative potential according to system condition changes by estimating power feeding line insulation changes in steel wheel system and rubber wheel system, and equalizing DC power feeding system when ground fault occurred. Also, in order to estimate negative potential of real system, we modeled the rubber wheel system, and simulated normal status, grounding fault occurrence and power feeding line insulation changes. In normal status, negative potential did not rise significantly regardless of vehicle operation. When ground fault occurred, negative potential rose up over 300V regardless of fault resistance. However, we also observed that negative potential rose when power feeding line insulation dropped down under $1M{\Omega}$. In conclusion, our result shows that in case of rubber wheel system unlike steel wheel system, relay will be prevented maloperation and insulation status observation can be ensured when ground over voltage relay will be set 200V ~ 300V.

A Study on the Voltage Stabilization Method of Distribution System Using Battery Energy Storage System and Step Voltage Regulator

  • Kim, Byung-ki;Park, Jae-Beom;Choi, Sung-Sik;Jang, Moon-Seok;Rho, Dae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • In order to maintain customer voltages within the allowable limit($220{\pm}13V$) as much as possible, tap operation strategy of SVR(Step Voltage Regulator) which is located in primary feeder, is widely used for voltage control in the utilities. However, SVR in nature has operation characteristic of the delay time ranging from 30 to 150 sec, and then the compensation of BESS (Battery Energy Storage System) during the delay time is being required because the customer voltages in distribution system may violate the allowable limit during the delay time of SVR. Furthermore, interconnection of PV(Photovoltaic) system could make a difficultly to keep customer voltage within the allowable limit. Therefore, this paper presents an optimal coordination operation algorithm between BESS and SVR based on a conventional LDC (Line Drop Compensation) method which is decided by stochastic approach. Through the modeling of SVR and BESS using the PSCAD/EMTDC, it is confirmed that customer voltages in distribution system can be maintained within the allowable limit.