• Title/Summary/Keyword: System of equations

Search Result 4,585, Processing Time 0.041 seconds

Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS) (산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발)

  • Lee, HoonTaek;WON, Myoung-Soo;YOON, Suk-Hee;JANG, Keun-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.21-36
    • /
    • 2019
  • Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, $R^2$ was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.

Investigation of the Emotional Characteristics of White for Designing White Based Products (백색 제품 디자인을 위한 감성적 특성 연구)

  • Na, Noo-Ree;Suk, Hyeon-Jeong;Lee, Jae-In
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.297-306
    • /
    • 2012
  • In this study we investigated emotional characteristics of various whites which have slightly different nuances to suggest guidelines that help designers to select appropriate colors when designing white based products. The study involved three different procedures. In experiment 1, we selected 20 emotional words through a survey (N=30) among 60 words, which we picked from literature review that was thought to be appropriate to evaluate product colors. In experiment 2, we evaluated the emotional characteristics of 13 basic colors from the I.R.I Hue & Tone 120 system (N=30) using previously selected emotional words, to find relative emotional positions of white in comparison to other colors. Based on the ratings, factor analysis was conducted and consequently four factors were extracted: flamboyant, elegant, clear, and soft. Accordingly, the emotional characteristics of the 13 colors were profiled and compared with those of white. Finally, in experiment 3, we conducted an evaluation of emotional characteristics on 25 whites with different nuances facilitating the four factors obtained in experiment 2. The color stimuli used in experiments were measured in terms of CIE 1976 $L^*a^*b^*$, and regression analysis was performed in order to predict the emotional characteristics through the L, a, and b values of a color, as long as that is perceived as a white. Throughout three empirical studies, we observed three overruling tendencies : First, there are four important factors when evaluating product color - flamboyant, elegance, clearness and softness; second, white is dominantly the most elegant in comparison to other colors; third, the emotional factors of the study were affected by some combinations of attributes of colors rather than by all three-hue, saturation and brightness. In addition, the equations derived from the regression analysis in experiment 3, it is expected that designers may predict the emotional distinction between nuances of white.

  • PDF

Comparisons of Soil Water Retention Characteristics and FDR Sensor Calibration of Field Soils in Korean Orchards (노지 과수원 토성별 수분보유 특성 및 FDR 센서 보정계수 비교)

  • Lee, Kiram;Kim, Jongkyun;Lee, Jaebeom;Kim, Jongyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.401-408
    • /
    • 2022
  • As research on a controlled environment system based on crop growth environment sensing for sustainable production of horticultural crops and its industrial use has been important, research on how to properly utilize soil moisture sensors for outdoor cultivation is being actively conducted. This experiment was conducted to suggest the proper method of utilizing the TEROS 12, an FDR (frequency domain reflectometry) sensor, which is frequently used in industry and research fields, for each orchard soil in three regions in Korea. We collected soils from each orchard where fruit trees were grown, investigated the soil characteristics and soil water retention curve, and compared TEROS 12 sensor calibration equations to correlate the sensor output to the corresponding soil volumetric water content through linear and cubic regressions for each soil sample. The estimated value from the calibration equation provided by the manufacturer was also compared. The soil collected from all three orchards showed different soil characteristics and volumetric water content values by each soil water retention level across the soil samples. In addition, the cubic calibration equation for TEROS 12 sensor showed the highest coefficient of determination higher than 0.95, and the lowest RMSE for all soil samples. When estimating volumetric water contents from TEROS 12 sensor output using the calibration equation provided by the manufacturer, their calculated volumetric water contents were lower than the actual volumetric water contents, with the difference up to 0.09-0.17 m3·m-3 depending on the soil samples, indicating an appropriate calibration for each soil should be preceded before FDR sensor utilization. Also, there was a difference in the range of soil volumetric water content corresponding to the soil water retention levels across the soil samples, suggesting that the soil water retention information should be required to properly interpret the volumetric water content value of the soil. Moreover, soil with a high content of sand had a relatively narrow range of volumetric water contents for irrigation, thus reducing the accuracy of an FDR sensor measurement. In conclusion, analyzing soil water retention characteristics of the target soil and the soil-specific calibration would be necessary to properly quantify the soil water status and determine their adequate irrigation point using an FDR sensor.

Estimation of Wheat Growth using a Microwave Scatterometer (마이크로파 산란계를 이용한 밀 생육 추정)

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyungdo;Jang, Soyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.23-31
    • /
    • 2013
  • Microwave remote sensing can help monitor the land surface water cycle and crop growth. This type of remote sensing has great potential over conventional remote sensing using the visible and infrared regions due to its all-weather day-and-night imaging capabilities. In this paper, a ground-based multi-frequency (L-, C-, and X-band) polarimetric scatterometer system capable of making observations every 10 min was developed. This system was used to monitor the wheat over an entire growth cycle. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. Backscattering coefficients for the crop growing season were compared with biophysical measurements. Backscattering coefficients for all frequencies and polarizations increased until dat of year 137 and then decreased along with fresh weight, dry weight, plant height, and vegetation water content (VWC). The range of backscatter for X-band was lower than for L- and C-band. We examined the relationship between the backscattering coefficients of each band (frequency/polarization) and the various wheat growth parameters. The correlation between the different vegetation parameters and backscatter decreased with increasing frequency. L-band HH-polarization (L-HH) is best suited for the monitoring of fresh weight (r=0.98), dry weight (r=0.96), VWC (r=0.98), and plant height (r=0.96). The correlation coefficients were highest for L-band observations and lowest for X-band. Also, HH-polarization had the highest correlations among the polarization channels (HH, VV and HV). Based on the correlation analysis between backscattering coefficients in each band and wheat growth parameters, we developed prediction equations using the L-HH based on the observed relationships between L-HH and fresh weight, dry weight, VWC and plant height. The results of these analyses will be useful in determining the optimum microwave frequency and polarizations necessary for estimating vegetation parameters in the wheat.

Structure of Export Competition between Asian NIEs and Japan in the U.S. Import Market and Exchange Rate Effects (한국(韓國)의 아시아신흥공업국(新興工業國) 및 일본(日本)과의 대미수출경쟁(對美輸出競爭) : 환율효과(換率效果)를 중심(中心)으로)

  • Jwa, Sung-hee
    • KDI Journal of Economic Policy
    • /
    • v.12 no.2
    • /
    • pp.3-49
    • /
    • 1990
  • This paper analyzes U.S. demand for imports from Asian NIEs and Japan, utilizing the Almost Ideal Demand System (AIDS) developed by Deaton and Muellbauer, with an emphasis on the effect of changes in the exchange rate. The empirical model assumes a two-stage budgeting process in which the first stage represents the allocation of total U.S. demand among three groups: the Asian NIEs and Japan, six Western developed countries, and the U.S. domestic non-tradables and import competing sector. The second stage represents the allocation of total U.S. imports from the Asian NIEs and Japan among them, by country. According to the AIDS model, the share equation for the Asia NIEs and Japan in U.S. nominal GNP is estimated as a single equation for the first stage. The share equations for those five countries in total U.S. imports are estimated as a system with the general demand restrictions of homogeneity, symmetry and adding-up, together with polynomially distributed lag restrictions. The negativity condition is also satisfied for all cases. The overall results of these complicated estimations, using quarterly data from the first quarter of 1972 to the fourth quarter of 1989, are quite promising in terms of the significance of individual estimators and other statistics. The conclusions drawn from the estimation results and the derived demand elasticities can be summarized as follows: First, the exports of each Asian NIE to the U.S. are competitive with (substitutes for) Japan's exports, while complementary to the exports of fellow NIEs, with the exception of the competitive relation between Hong Kong and Singapore. Second, the exports of each Asian NIE and of Japan to the U.S. are competitive with those of Western developed countries' to the U.S, while they are complementary to the U.S.' non-tradables and import-competing sector. Third, as far as both the first and second stages of budgeting are coneidered, the imports from each Asian NIE and Japan are luxuries in total U.S. consumption. However, when only the second budgeting stage is considered, the imports from Japan and Singapore are luxuries in U.S. imports from the NIEs and Japan, while those of Korea, Taiwan and Hong Kong are necessities. Fourth, the above results may be evidenced more concretely in their implied exchange rate effects. It appears that, in general, a change in the yen-dollar exchange rate will have at least as great an impact, on an NIE's share and volume of exports to the U.S. though in the opposite direction, as a change in the exchange rate of the NIE's own currency $vis-{\grave{a}}-vis$ the dollar. Asian NIEs, therefore, should counteract yen-dollar movements in order to stabilize their exports to the U.S.. More specifically, Korea should depreciate the value of the won relative to the dollar by approximately the same proportion as the depreciation rate of the yen $vis-{\grave{a}}-vis$ the dollar, in order to maintain the volume of Korean exports to the U.S.. In the worst case scenario, Korea should devalue the won by three times the maguitude of the yen's depreciation rate, in order to keep market share in the aforementioned five countries' total exports to the U.S.. Finally, this study provides additional information which may support empirical findings on the competitive relations among the Asian NIEs and Japan. The correlation matrices among the strutures of those five countries' exports to the U.S.. during the 1970s and 1980s were estimated, with the export structure constructed as the shares of each of the 29 industrial sectors' exports as defined by the 3 digit KSIC in total exports to the U.S. from each individual country. In general, the correlation between each of the four Asian NIEs and Japan, and that between Hong Kong and Singapore, are all far below .5, while the ones among the Asian NIEs themselves (except for the one between Hong Kong and Singapore) all greatly exceed .5. If there exists a tendency on the part of the U.S. to import goods in each specific sector from different countries in a relatively constant proportion, the export structures of those countries will probably exhibit a high correlation. To take this hypothesis to the extreme, if the U.S. maintained an absolutely fixed ratio between its imports from any two countries for each of the 29 sectors, the correlation between the export structures of these two countries would be perfect. Therefore, since any two goods purchased in a fixed proportion could be classified as close complements, a high correlation between export structures will imply a complementary relationship between them. Conversely, low correlation would imply a competitive relationship. According to this interpretation, the pattern formed by the correlation coefficients among the five countries' export structures to the U.S. are consistent with the empirical findings of the regression analysis.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.64-64
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well.2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air.3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying.4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis.5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time.6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture.7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation.8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise.11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss.12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method.13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated.Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year.14. Required fan horsepower and energy for the intermittent fan operation were3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation.15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use.16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF

Extraction Characteristics of Flavonoids from Lonicera flos by Supercritical Fluid Carbon Dioxide ($SF-CO_2$) with Co-solvent (초임계유체 $CO_2$ 및 Co-solvent 첨가에 따른 금은화(Lonicera fles)의 Flavonoid류 추출특성)

  • Suh, Sang-Chul;Cho, Sung-Gill;Hong, Joo-Heon;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • Effects of co-solvent polarity, citric acid, pressure, temperature, run time, and co-solvent ratio on extraction of major flavonoids from Lonicera Flos were investigated using supercritical fluid $CO_{2}(SF-CO_{2})$. HPLC analysis revealed addition of pure methanol resulted in low extraction yield of major flavonoids, luteoloin (Lu), Quercetin (Qu), Apigenin (Ap). Under same condition, as co-solvent polarity increased, yields of major flavonoids increased gradually, At optimum co-solvent extraction condirion of 60% aqueous methanol (10%, v/v), yields of Lu, Qu, and Ap were 42.09, 28.18, and 3.49 mg/100 g, respectively. Addition of citric acid to 60% aqueous methanol gave higher, with addition of 1% citrie acid resulting in highest yields of 63.2 (Lu), 39.35 (Qu), and 5.79 (Ap) mg/100 g. Optimum extraction conditions of major flavonoids were 200 bar, $50^{\circ}C$, 60 min, and $CO_{2}$-methanol-water(20: 1.8: 1.2).

The Analysis of Cost Structure and Productivity in the Korea and Japan Railroad Industry (한국과 일본 철도산업의 비용구조와 생산성 분석)

  • Park, Jin-Gyeong;Kim, Seong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.65-78
    • /
    • 2006
  • This paper investigates the cost structure ot the Korea and Japan railroad industry with respect to density, scale and scope economies as well as productivity growth rate using a generalized trans)og multiproduct cost function model. The paper then assumes that the Korea and Japan railway companies pi·educe three outputs (incumbent railway passenger-kilometers. Shinkansen passenger-kilometers, ton-kilometers of freight) using four input factors (labor, fuel, maintenance, rolling stock and capital). The specified cost function includes foul other independent variables: track lengths to reflect network effects, two dummies to reflect nation and ownership effects, and time trend as a proxy for technical change. The simultaneous equation system consisting of a cost function and three input share equations is estimated with the Zellner's iterative seemingly unrelated regression. The unbalanced panel data used in the paper, a total of 154 observations. are collected from the annual records of the Korea National Railroad (KNR) for the yews $1977{\sim}2003$, Japan National Railways (JNR) for the years $1977{\sim}1984$. seven Japan Railways (JR's) for the years $1987{\sim}2003$. The findings show that the Korean and Japanese railways exhibit product-specific and overall economies of density but product-specific diseconomies of scale with respect to incumbent railway passenger-kilometers, Shinkansen-kilometers and ton-kilometers. However, the railways experience mild overall economies of scale which result from economies of scope associated with the joint production of incumbent railway/Shinkansen and feight, freight/incumbent railway and Shinkansen except Shinkansen/incumbent railway and freight. In addition, the economies of density and scale in the KNR, JR east, JR central, and JR west companies at the point of the years $1990{\sim}2003$ average is generally analogous to the above results at the point of sample average. There also appear to be economies of ssope associated with the joint Production of the incumbent railway and Shinkansen in JR central but diseconomies of scope in JR East and JR West. The findings also indicate that the productivity growth rate of the privately-owned JR's is larger than that of the government-owned KNR.

Effect of Planting Date, Temperature on Plant Growth, Isoflavone Content, and Fatty Acid Composition of Soybean (파종기 및 온도처리가 콩의 생육 및 Isoflavone 함량과 지방산 조성에 미치는 영향)

  • Jung, Gun-Ho;Lee, Jae-Eun;Kim, Yul-Ho;Kim, Dae-Wook;Hwang, Tae-Young;Lee, Kwang-Sik;Lee, Byung-Moo;Kim, Hong-Sig;Kwon, Young-Up;Kim, Sun-Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.373-383
    • /
    • 2012
  • Soybean, C.V. Daewonkong, was planted on 25 May and 25 June in 2011, and four temperature gradient, control (ambient temperature in field plot), control + $3^{\circ}C$, control + $4^{\circ}C$, and control + $5^{\circ}C$, were artificially created by controlling the green house system. The obtained results indicated that vegetative growth of soybean plant was beneficially facilitated by planting on May (PM) than planting on June (PJ). The 100-seed weight was significantly higher in PM, and positively affected by increasing temperature, whereas the weight was reduced in control + $5^{\circ}C$ plot. Isoflavone content and fatty acid composition were analyzed to determine the effects of plating date and growth temperature. Isoflavone content was higher in PJ plot ($1479.8{\mu}g/g$) than in PM plot ($1201.8{\mu}g/g$), however, the influence of growth temperature varied with planting date. The composition of oleic acid was positively affected by increasing temperature, whereas the proportions of linoleic and linolenic acid were reduced. The numbers of node was considered as a major variable in the regression equations estimated using forward stepwise regression analysis for isoflavone content and unsaturated fatty acid under different environmental conditions.