• Title/Summary/Keyword: System of equations

Search Result 4,585, Processing Time 0.035 seconds

Development of Grid Based Distributed Rainfall-Runoff Model with Finite Volume Method (유한체적법을 이용한 격자기반의 분포형 강우-유출 모형 개발)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Lee, Jin-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.895-905
    • /
    • 2008
  • To analyze hydrologic processes in a watershed requires both various geographical data and hydrological time series data. Recently, not only geographical data such as DEM(Digital Elevation Model) and hydrologic thematic map but also hydrological time series from numerical weather prediction and rainfall radar have been provided as grid data, and there are studies on hydrologic analysis using these grid data. In this study, GRM(Grid based Rainfall-runoff Model) which is physically-based distributed rainfall-runoff model has been developed to simulate short term rainfall-runoff process effectively using these grid data. Kinematic wave equation is used to simulate overland flow and channel flow, and Green-Ampt model is used to simulate infiltration process. Governing equation is discretized by finite volume method. TDMA(TriDiagonal Matrix Algorithm) is applied to solve systems of linear equations, and Newton-Raphson iteration method is applied to solve non-linear term. Developed model was applied to simplified hypothetical watersheds to examine model reasonability with the results from $Vflo^{TM}$. It was applied to Wicheon watershed for verification, and the applicability to real site was examined, and simulation results showed good agreement with measured hydrographs.

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue Life (피로 수명을 고려한 중형 복합재 풍력터빈 블레이드의 구조설계 및 실험 평가)

  • Gong, Chang Deok;Bang, Jo Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.23-30
    • /
    • 2003
  • In this study, the various load cases by specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade was performed using the finite element method(FEM). In the structural design, the acceptable configuration of blade structure was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable for all the considerd load cases. Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design loads and also the fatigue loads. The fatigue life for operating more than 20 years was estimated by using the well-known S-N linear damage rule, the load spectrum and Spera's empirical equations. The full-scale static test was performed under the simulated aerodynamic loads. from the experimental results, it was found that the designed blade had the structural integrity. Furthermore the measured results were agreed with the analytical results such as deflections, strains, the mass and the radial center of gravity. The studied blade was successfully certified by an international institute, GL, of Germany.

The Role of Internal R&D and R&D Cooperation in Technological Innovation (기술혁신성과에 있어서 R&D협력과 내부R&D투자의 역할에 관한 연구)

  • Choi, Eun Young;Park, Jungsoo
    • Journal of Technology Innovation
    • /
    • v.23 no.1
    • /
    • pp.61-86
    • /
    • 2015
  • This study provides an empirical analysis based on 2012 Korea Innovation Survey (STEPI) to investigate the relation between R&D cooperation and in-house R&D investment. The study further analyzes the effect of the R&D cooperation and in-house R&D investment on technical innovation. First, the relation between company's in-house R&D investment and R&D cooperations is estimated with the two equations using SUR models. Second, the effect of in-house R&D investment and R&D cooperation on the company's technical innovation is estimated using Probit model. This study differs from other existing R&D studies using Korean data in that empirical models are based on structural relationships among in-house R&D, R&D cooperation, and technical innovation. The results can be summarized as follows; the R&D cooperation expands the in-house R&D investment and the in-house R&D strengthen the R&D cooperation. Furthermore, In-house R&D investment increases the chances of success in innovation. As we obtain evidence of complementary relation between R&D cooperation and in-house R&D investment, it is necessary to develop environment conducive to this complementarity in order to have more efficient R&D system.

Correction of Beam Direction Error caused by Frequency Scan Effect in Active Phased Array Antenna for Satellite Communications (위성통신 능동 위상배열 안테나에서 주파수 스캔 효과로 발생하는 빔 지향 오차의 보상)

  • 전순익;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.413-420
    • /
    • 2003
  • In this paper, the correction method of antenna beam direction errors is introduced which caused by frequency scan effect in active Phased may antenna for satellite communications. The antenna makes the beam directional error from frequency scan effect when it has dual beam may structure with asymmetrical series connection, their frequencies are different and for from each other, their 3dB beamwidth is narrow, and scan range is wide. By proposed equations, estimated beam direction error angles can be calculated and active phase shifter control values also can be calculated to compensate them. In this paper, the active phased array antenna system was fabricated to measure beam direction errors both before and after correction, which has dual beam from 32${\times}$4 main level array and 4${\times}$2 second level array, frequency deviation 500 MHz max.(6.7 %) at 7.25 GHz∼7.75 GHz ranges, 0$^{\circ}$${\pm}$35$^{\circ}$nm ranges, and 35.6 dBi gain with 2.2$^{\circ}$3 dB beam width. Its beam direction error by frequency san effect which was 2.5$^{\circ}$max., was reduced to 0.2$^{\circ}$max. after correction. This was 7 dB improvement of signal loss. The active phased array antenna can accurately track the target satellite for communications by this proposed correction method.

Micro- Weather Factors during Rice Heading Period Influencing the Development of Rice Bacterial Grain Rot (세균성벼알마름병 발병에 미치는 벼 출수기의 미기상 요인)

  • Lee, Yong-Hwan;Ko, Sug-Ju;Cha, Kwang-Hong;Choi, Hyeong-Gug;Lee, Doo-Goo;Noh, Tae-Hwan;Lee, Seung-Don;Han, Kwang-Seop
    • Research in Plant Disease
    • /
    • v.10 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • To make the forecasting model of rice bacterial grain rot (RGBR) using the statistical procedures with SAS(Statistical Analysis System) based on micro-weather factors during heading period of rice, 21 rice varieties having the different heading time (40% panicles headed) were planted at 30 May and 15 June in Naju. Heading time and diseased panicles were investigated from July to August in 1998. RGBR mainly occurred on varieties headed from 29 July to 19 August, but not on varieties headed after 22 August. RGBR was highly correlated with diurnal temperature during 7 days (r =-0.871 **) and 10 days (r =-0.867**) and minimum relative humidity during 15 days from 3 days before heading time. After examining the models with several ways ($R^2$, Adjusted $R^2$, MSE), one equations were selected: Y =92.83 - 2.43Tavr + 1.88Tmin - 1.04RHavr + 0.37RHmin + 0.43RD - 3.68WS ($R^2$=0.824) using six variables of average and minimum temperature (Tavr and Tmin), average and minimum relative humidity (RHavr and RHmin), rainy days (RD), and wind speed (WS) during 7 days from 3 days before to 3 days after heading time.

Development of a Planting Density-Growth-Harvest Chart for Common Ice Plant Hydroponically Grown in Closed-type Plant Production System (식물 생산 시스템에서 수경재배한 Common Ice Plant의 재식밀도-생육-수확 도표 개발)

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.106-110
    • /
    • 2016
  • In this study, a planting density-growth-harvest (PGH) chart was developed to easily read the growth and harvest factors such as crop growth rate, relative growth rate, shoot fresh weight, shoot dry weight, harvesting time, marketable rate, and marketable yield of common ice plant (Mesembryanthemum crystallinum L.). The plants were grown in a nutrient film technique (NFT) system in a closed-type plant factory using fluorescent lamps with three-band radiation under a light intensity of $140{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and a photoperiod of 12 h. Growth and yield were analyzed under four planting densities ($15{\times}10cm$, $15{\times}15cm$, $15{\times}20cm$, and $15{\times}25cm$). Shoot fresh and dry weights per plant increased at a higher planting density until reached an upper limit and yield per area was also same tendency. Crop growth rate, relative growth rate and lost time were described using quadratic equation. A linear relationship between shoot dry weight and fresh weights was observed. PGH chart was constructed based on the growth data and making equations. For instance, with within row spacing (= 20 cm) and fresh weight per plant at harvest (= 100 g), we can estimate all the growth and harvest factors of common ice plant. The planting density, crop growth rate, relative growth rate, lost time, shoot dry weight per plant, harvesting time, and yield were $33plants/m^2$, $20g{\cdot}m^{-2}{\cdot}d^{-1}$, $0.27g{\cdot}g^{-1}{\cdot}d^{-1}$, 22 days, 2.5 g/plant, 26 days after transplanting, and $3.2kg{\cdot}m^{-2}$, respectively. With this chart, we could easily obtain the growth factors such as planting density, crop growth rate, relative growth rate, lost time and the harvest factors such as shoot fresh and dry weights, harvesting time, marketable rate, and marketable yield with at least two parameters, for instance, planting distance and one of harvest factors of plant. PGH charts will be useful tools to estimate the growth and yield of crops and to practical design of a closed-type plant production system.

Kinematic Analysis of Airborne Movement of Dismount from High Bar(I) (철봉 내리기 공중 동작의 운동학적 분석(I))

  • Choi, Ji-Young;Kim, Youg-Ee;Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.159-177
    • /
    • 2002
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle and the angular velocity of the air born phase and understand the control mechanism of the high-bar movement, the somersault, the double somersault, the double somersault with full twist. For this study seven well trained university gymnastic volunteered, Zatsiorky and Seluyanov(1983, 1985)'s sixteen segment system anatomical model was used for this study. For the movement analysis three dimensional cinematographical method(Arial Performance Analysis System : APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 5.1 graphical profromming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and angular velocity were defined. As a result of this study 1. As the rotation of the body increased in the air born phase the projection angle of the CM of the total increased, this resulted the increased of the max hight of the CM. 2. In three dimensional angular velocity the Z axis(vertical direction) projection angular velocity increased as the rotation of the body increased in the airborn phase, but the Y axis and the X axis projection angular velocity did not show significant differences. 3. As the rotation of the body increased in the air born phase the angular movement of the shoulder and the hip showed significant change. These movement act as the starter in the preparation phase. 4. The somersault angle, the twist angle, the tilt angle of the upper body related to the global reference frame in the releas phase the average somersault angle of the three types of high-bar movement was $57.7^{\circ}$, $38.8^{\circ}$, $39.7^{\circ}$, the average tilt angle was $-1.5^{\circ}$, $-5.4^{\circ}$, $-8.4^{\circ}$, the average twist angle was $13.4^{\circ}$, $10.6^{\circ}$, $23.3^{\circ}$. This result showed that the somersault with full twist had the largest movement.

Establishment of Waste Collection and Transportation System for Composting I. Estimation of Unit Garbage Generation (퇴비화촉진을 위한 쓰레기 수거체계의 확립 I. 음식물찌꺼기 원단위 발생량의 산정)

  • Shin, H.S.;Hwang, E.J.;Kang, H.;Lee, S.J.;Jang, W.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.25-36
    • /
    • 1995
  • It is important to separate the compostables from waste for successful operation of composting plant, since various compositions are mixed in it. For the separation of compostables, it is necessary to estimate total amounts of compostables from several sources. Based on it, required capacity and number of composting plant as well as proper waste collection and transportation system can be determined. So, amounts of garbage, major target material for composting. were estimated in this study. In survey of unit garbage generation(UGG). different estimation results would be obtained depending on the basis of its measurement. However, previous researches did not consider it. In this paper, the correlations between area and the number of user of garbage source were analyzed to find the related equations which were apllyed to estimation of total generation. Obtained results are as the following. Relative variations of measured UGG based on area and custumer are 62.5 and 52.8, respectively. In linear regression, related equation between area and custumer was Y=0.244X+59.0 (X=area, Y=custumer). The correlation factor r is 0.904. Equation Y=616.5X/(X+1215.4) was also obtained from linear regression using Monod equation (r=0.720). From the first order equation and measured data of UGG based on custumer, amounts of garbage generation from restaurant in Seoul and the whole country were calculated to 2043.9 ton/d and 9014.0 ton/d, respectively. But, the values calculated from measured data of UGG based on area were as low as 821.3 ton/d Cin Seoul) and 3821.0 ton/d(in the whole country). Consequently, the measurement of unit garbage generation based on the number of custumer was more favorable to lessen the points of survey and to guarantee the representative values. Especially, it would fit well on restaurant having statistics of area.

  • PDF

A Comparative Analysis between Photogrammetric and Auto Tracking Total Station Techniques for Determining UAV Positions (무인항공기의 위치 결정을 위한 사진 측량 기법과 오토 트래킹 토탈스테이션 기법의 비교 분석)

  • Kim, Won Jin;Kim, Chang Jae;Cho, Yeon Ju;Kim, Ji Sun;Kim, Hee Jeong;Lee, Dong Hoon;Lee, On Yu;Meng, Ju Pil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.553-562
    • /
    • 2017
  • GPS (Global Positioning System) receiver among various sensors mounted on UAV (Unmanned Aerial Vehicle) helps to perform various functions such as hovering flight and waypoint flight based on GPS signals. GPS receiver can be used in an environment where GPS signals are smoothly received. However, recently, the use of UAV has been diversifying into various fields such as facility monitoring, delivery service and leisure as UAV's application field has been expended. For this reason, GPS signals may be interrupted by UAV's flight in a shadow area where the GPS signal is limited. Multipath can also include various noises in the signal, while flying in dense areas such as high-rise buildings. In this study, we used analytical photogrammetry and auto tracking total station technique for 3D positioning of UAV. The analytical photogrammetry is based on the bundle adjustment using the collinearity equations, which is the geometric principle of the center projection. The auto tracking total station technique is based on the principle of tracking the 360 degree prism target in units of seconds or less. In both techniques, the target used for positioning the UAV is mounted on top of the UAV and there is a geometric separation in the x, y and z directions between the targets. Data were acquired at different speeds of 0.86m/s, 1.5m/s and 2.4m/s to verify the flight speed of the UAV. Accuracy was evaluated by geometric separation of the target. As a result, there was an error from 1mm to 12.9cm in the x and y directions of the UAV flight. In the z direction with relatively small movement, approximately 7cm error occurred regardless of the flight speed.

Total Polyphenol Contents and Antioxidant Activities of Methanol Extracts from Vegetables produced in Ullung Island (울릉도산 산채류 추출물의 총 폴리페놀 함량 및 항산화 활성)

  • Lee, Syng-Ook;Lee, Hyo-Jung;Yu, Mi-Hee;Im, Hyo-Gwon;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.233-240
    • /
    • 2005
  • To discover new functional materials using edible plants, antioxidant activities of methanol extracts from various parts of seven wild vegetables were investigated in vitro. Total polyphenol contents, determined by Folin-Denis method, varied from 16.74 to $130.22{\mu}g/mg$. Radical-scavenging activities of methanol extracts were examined using ${\alpha},\;{\alpha}-diphenyl-{\beta}-pirrylhydrazyl$ (DPPH) radicals and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay. Inhibition effects on peroxidation of linoleic acid determined by ferric thiocyanate (FTC) method and on oxidative degradation of 2-deoxy-D-ribose in Fenton-type reaction system were dose-dependent. Athyrium acutipinulum Kodama (leaf and rood), Achyranthes japonica (Miq.) Nakai (seed), and Solidago virga-aurea var. gigantea Nakai (root) showed relatively high antioxidant activities in various systems.