• 제목/요약/키워드: System of Rigid and Flexible Bodies

검색결과 22건 처리시간 0.03초

생산자동화 시스템을 위한 산업용 로봇의 운전특성 시뮬레이션에 관한 연구 (A Study on the Simulation of Operational Characteristics of Industrial Robot for Automated Manufacturing System)

  • 김진광
    • 한국산업융합학회 논문집
    • /
    • 제20권5호
    • /
    • pp.405-410
    • /
    • 2017
  • This paper deals with 3D simulation of industrial robot for automated manufacturing system. In order to evaluate the operational characteristics of the industrial robot system in the worst case motion scenario, flexible - rigid multibody analysis was performed. Then, the rigid body dynamics analysis was performed and the results were compared with the flexible - rigid multibody analysis. Modal analysis was also performed to confirm the dynamic characteristics of the robot system. In the case of the flexible-rigid multibody simulation, only the structural members of interest were modeled as elastic bodies to confirm the stress state. The remaining structural members were modeled as rigid bodies to reduce computer resources.

중복 고유 진동수를 갖는 진동하는 강체-유연체 계의 위상최적설계 (Topology Optimization of a Vibrating System of Rigid and Flexible Bodies for Maximizing Repeated Eigenfrequencies)

  • 안병성;김서인;김윤영
    • 대한기계학회논문집A
    • /
    • 제40권4호
    • /
    • pp.363-372
    • /
    • 2016
  • 강체와 유연체가 혼합된 다종 구조 시스템의 동특성을 개선을 위한 최적화를 수행하는 경우, 일반적으로 그 시스템의 고유 진동수를 높이게 된다. 강체와 유연체의 시스템을 동시에 다루는 위상 최적화 정식화가 있으나, 그 시스템의 고유 진동수를 다룬 연구는 드물며, 특히 목적하는 진동수가 중복 고유 진동수 의 하나로 되는 경우를 다룬 연구는 보고된 바 없다. 본 연구에서는 중복 고유 진동수를 다루어야 하는 경우에 나타나는 수치적 문제를 해결하였으며 그 방법을 활용한 위상최적설계 정식화와 민감도 해석을 제시하였다. 그 다음, 몇 가지 수치 예제를 통해 제안된 정식화의 타당성을 검증해 보았다.

여유구속을 갖는 유연체 기계시스템의 동역학 해석 (Analysis of a Flexible Multi-body System with Over-constraints)

  • 서종휘;박태원;채장수;서현석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.874-880
    • /
    • 2003
  • Many mechanical systems are over-constrained if only rigid bodies are used to model the system. One example of such system is a satellite system with solar panels. To avoid this over-constrained problem, solar panels can be modeled as flexible bodies. The CMS(Component Mode Synthesis) method is widely used to analyze the flexible multi-body system because it can considerably approximate the deformation of the flexible bodies using small number of well-selected mode. However, it is very difficult to decide the boundary condition and the selection of modes. In this paper, the methods for mode synthesis and setting the boundary condition are presented to analyze the flexible multi-body system with over-constraints. Finally, the reliability of proposed method is verified by solar panel's deployment test.

  • PDF

변형체-강체 다물체 해석을 이용한 초중량물 핸들링로봇의 평가 (Estimation on Heavy Handling Robot using Flexible-Rigid Multibody Analysis)

  • 김진광;고해주;박기범;김태규;정윤교
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.46-52
    • /
    • 2010
  • A flexible-rigid multibody analysis was pen armed to examine the dynamic response of a heavy handling robot system under a worst motion scenario. A rigid body dynamics analysis was solved and compared with flexible-rigid multibody analysis. The modal analysis and test were also carried out to establish the accuracy and the validation of the finite element model used in this paper. For the flexible-rigid multibody simulation, stresses in several major bodies were interested, so that those parts are flexible and other parts are modeled as rigid body in order to reduce computer resources.

탄성체를 포함하는 마운트계의 동역학 해석 프로그램 개발 (Development of a Computer Program for the Dynamic Analysis of Mount System with Flexible Bodies)

  • 이병훈;김경우;정우진
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.94-102
    • /
    • 2000
  • A computer program for three dimensional dynamic analysis of a mount system composed of rigid or flexible bodies and mount elements is developed. Cartesian coordinates and Euler parameters are used to specify the positions and orientations of the bodies. The equations of motion are formulated using Langrange equation and Langrange multiplier technique. The developed program includes routine, for inclined mount elements, several kinds of driving constrains, and external forces. The Static equilibrium analysis routine is also developed using iterative method.

DADS를 이용한 유연 다물체의 동응력 해석 (Dynamic Stress Analysis of Flexible Multibody using DADS)

  • 안기원;서권희;황원걸
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.107-112
    • /
    • 1998
  • A great deal of time and effort are required to evaluate the safety and durability of a vehicle structure in the vehicle development stage. It is difficult to find the reasons for cracks which occur in the body and frame of a vehicle during tests. Recently computer aided engineering techniques have been utilized to solve the problems of safety and durability of vehicles. In this study, a dynamic stress analysis is performed on the frame of the vehicle by rigid and flexible multibody dynamics techniques. The result of the analysis is compared to that of the actual test. The full vehicle dynamic models for the rigid and flexible bodies are developed by DADS package. The modal coordinate system is used to save time for the dynamic stress analysis. The flexible multibody dynamic models have 12 normal modes considering the flexibility of the frame. Dynamic stresses arc calculated by relating the stress influence coefficients and the applied forces.

  • PDF

붐의 탄성효과를 고려한 해상크레인의 유연 다물체 동역학 해석 (Analysis of Dynamic Response of a Floating Crane and a Cargo with Elastic Booms Based on Flexible Multibody System Dynamics)

  • 박광필;차주환;이규열
    • 대한조선학회논문집
    • /
    • 제47권1호
    • /
    • pp.47-57
    • /
    • 2010
  • This study analyzes the dynamic response of a floating crane with a cargo considering an elastic boom to evaluate(or for evaluation of) its flexibility effect on their dynamic response. Flexible multibody system dynamics is applied in order to establish a dynamic equation of motion of the multibody system, which consists of flexible and rigid bodies. In addition, a floating reference frame and nodal coordinates are used to model the boom as a flexible body. The study also simulates the coupled surge, pitch, and heave motions of the floating crane carrying the cargo with three degrees of freedom by numerically solving the equation. Finally, the simulation results of the elastic and rigid booms are comparatively analyzed and the effects of the flexible boom are discussed.

유연 다물체 동역학 해석을 이용한 4축 이적재 로봇의 주요 부품 선정 (Selecting Main Parts of a Four-Axis Palletizing Robot Through Dynamic Analysis of Rigid-Flexible Multibody Systems)

  • 박일환;고아라;설상석;홍대선
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.54-63
    • /
    • 2022
  • Among the various industrial robots, palletizing robots have received particular attention because of their higher productivity in accordance with technological progress. When designing a palletizing robot, the main components, such as the servo motors and reducers, should be properly selected to ensure its performance. In this study, a practical method for selecting the motors and reducers of a robot was proposed by performing the dynamic analysis of rigid-flexible multibody systems using ANSYS and ADAMS. In the first step, the links and frames were selected based on the structural analysis results obtained from ANSYS. Subsequently, a modal neutral file (MNF) with information on the flexible body was generated from the links and frames using modal analysis through ANSYS and APDL commands. Through a dynamic analysis of the flexible bodies, the specifications of the major components were finally determined by considering the required torque and power. To verify the effectiveness of the proposed method, the analysis results were compared with those of a rigid-body model. The comparison showed that rigid-flexible multibody dynamic analysis is much more useful than rigid body analysis, particularly for movements heavily influenced by gravity.

MATLAB을 이용한 유연 다물체 시스템의 해석 및 제어 (Analysis and Control of the Flexible Multibody System Using MATLAB)

  • 정성필;박태원
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.437-443
    • /
    • 2008
  • In this paper, analysis and control of the flexible multibody system using MATLAB is presented. The equations of motion of a flexible body are derived in terms of the modal coordinate. The rigid-flexible multibody dynamic solver is developed. Finite element information required to analyze motion of flexible bodies is imported from ANSYS. The modified finite element data, such as modal mass matrix, modal stiffness matrix and constraint mode shapes, is calculated in the solver. Since the solver is developed using MATLAB, it is very easy to connect with SIMULINK which is widely used to control motion of the multibody system. Several simulations are implemented to verify the developed solver. A control example is carried out and the usefulness of the developed solver is demonstrated.

상대좌표를 이용한 3차원 미디어 이송장치에 대한 실험방법과 Simulation에 대한 연구 (Simulation and Experimental Methods for Three-Dimensional Sheet Media Transport System Using Relative Coordinate)

  • 배대성;조희제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.573-576
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

  • PDF