• Title/Summary/Keyword: System decontamination

Search Result 131, Processing Time 0.028 seconds

Evaluation of system design modifications for full system decontamination of Kori Unit 1

  • Kim, HakSoo;Kim, JeongJu;Kim, ChoRong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3949-3956
    • /
    • 2022
  • Kori Unit 1 is planning a system decontamination project to reduce radiation exposure of decommissioning workers, prevent the spread of contamination and down-grade the level of classification of radioactive waste. The system decontamination range for Kori Unit 1 will be the entire primary system, including RCS, CVCS and RHRS. Some system design modifications are required for the system decontamination operation. In this paper, major system design modifications were evaluated based on the conditions that system restoration is needed after completion of system decontamination. The major system design modifications are CIDF connection location to system, system decontamination operating pressure control, RCP seal water injection and formation of letdown flow. It was evaluated that there was no negative effect on the system due to the system design modifications. However, as the RCP seal water is injected into the system in the oxidation process, the concentration of the oxidizing agent is diluted. Therefore, the oxidizing agent injection and system decontamination operation procedures should be developed to address the dilution effect of the oxidizing agent. The system design modifications dealt in this paper will be finally confirmed through on-site investigation in the future, and if necessary, the system design modifications will be re-evaluated.

Remotely Operated Decontamination Systems for Use in DFDF

  • Kim, Kiho;Park, Jangjin;Myungseung Yang
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.438-446
    • /
    • 2003
  • This paper presents the development of the remotely operated decontamination systems for use in a highly radioactive zone of the DUPIC Fuel Development facility of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute. The remotely operated decontamination systems were designed to completely eliminate human interaction with hazardous radioactive contaminants. These decontamination systems are mainly classified into three systems depending on the task environment - a fabrication equipment decontamination system, a hot-cell floor decontamination system, and an isolation room floor decontamination system. A decontamination system for contaminated fabrication equipment utilizes dry ice pellet blasting method to decontaminate contaminated surface of the equipment. The decontamination systems for the hot-cell floor and isolation room floor employ a vacuum cleaning method to decontaminate the contaminated floor and collect loose dry spent nuclear fuel debris and other radioactive waste placed on the floor. The human operator from the out-of-cell performs a series of decontamination tasks remotely by manipulating decontamination systems located in-cell via a handcontroller with the aid of vision feedback information. The environmental, functional and mechanical design considerations, control system and capabilities of the remotely operated decontamination systems at a high radioactive environment are also described.

  • PDF

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • Ayantika Banerjee ;Wangkyu Choi ;Byung-Seon Choi ;Sangyoon Park;Seon-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1892-1900
    • /
    • 2023
  • A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

A SE Approach to Designing and Developing of Motion Control for Radioactive Waste Decontamination

  • Ngbede, Utah Michael;Olaide, Oluwasegun Adebena;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • Decontamination of systems, structures and components (SSC) during the decommissioning of a Nuclear Power Plant (NPP) can be for a variety of reasons. The main reasons for decontamination are: to reduce the contamination of SSC to a reasonably low level, to reduce the potential for the spread of contaminants into the environment and to reduce the cost of disposal due to the reduced level of contamination in a particular SSC. The decontamination technique can be aggressive or non-aggressive depending on the intent after the decontamination process. Aggressive decontamination technique is used when the intent is not to reuse the SSC while a non-aggressive decontamination technique is used with the intent of SSC reuse. For different SSCs there are different decontamination techniques that can be used, each having its own advantages and drawbacks. Metal components such as pipes in the nuclear power plant account for a large amount of nuclear wastes generated. Some of these wastes can be reused if the contaminant level is reduced to an acceptable level. Laser ablation is a non-aggressive decontamination technique that can be used to reduce the contamination in pipes to an acceptable level with no secondary waste generated during the process. The operation and control of a laser ablation device must be precise to achieve a high decontamination factor. This precision can be achieved by a well-designed motion control system. For this purpose, a motion control system was developed consisting of two parts: the first part being the precise control of the laser ablation device inside the pipe and the second part is the control of the laser ablation device outside the pipe. This paper describes the Systems Engineering approach for the development process of a motion control system for the Laser decontamination system.

Investigation of decontamination characteristics of a serial multiple pool scrubber system for consequence mitigation of severe accidents

  • Hyeon Ho Byun;Man-Sung Yim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4585-4600
    • /
    • 2022
  • A pool scrubber is often used as a wet-type design to mitigate the consequence of a severe nuclear accident. While studies indicated higher decontamination performance of a deeper pool, utilizing a very tall pool can be problematic due to potential structural stability and water backflow issues. This study proposes, as an alternative to a single pool system, a pool scrubber system composed of serially connected multiple pools with lower heights. Since large fraction of aerosol removal takes place in the injection region, serially connected pool scrubber system is expected to enhance the overall decontamination capability of a pool scrubber system. To support the analysis of the proposed system's decontamination capability, a new computer model was developed in the study to describe the bubble size dependent effect on aerosol removal including the effect of pool residence time. The accuracy of the new model was examined against experimental data for its validation. The proposed scrubber system composed of serially connected multiple shorter pools is found to have much improved decontamination performance over the current single pool system design.

Development of Chemical Decontamination Process of Stainless Steel for Reactor Coolant Pump(II) (원자로 냉각재 펌프용 스테인리스강에 대한 화학적 제염 공정 개발(II))

  • Kim, Seong-Jong;Kim, Jeong-Il;Kim, Ki-Joon
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.271-278
    • /
    • 2007
  • In this study, applicable possibility in chemical decontamination for reactor coolant pump(RCP) was investigated for the various stainless steels. The stainless steel(STS) 304 showed the best electrochemical properties for corrosion current density and the lowest weight loss ratio in chemical decontamination process model 3-3 than other materials. The weightloss quantity in chemical decontamination process model 3-3 presents the lowest value compare to the other chemical decontamination process model 1, 2, 3-1 and 3-2. In the case of SEM observation, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion were also increased with increasing cycle numbers.

A Study on the Applicability for Primary System Decontamination through Analysis on NPP Decommission Technology and International Experience (원전 제염기술 및 해외경험 분석을 통한 1차 계통 제염 적용 연구)

  • Song, Jong Soon;Jung, Min Young;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.45-55
    • /
    • 2016
  • Decontamination is one of the most important technologies for the decommissioning of NPP. The purpose of decontamination is to reduce the Risk of exposure of the decommissioning workers, and to recycle parts of the plant components. Currently, there is a lack of data on the efficiency of the decontamination technologies for decommissioning. In most cases, the local radiation level can be lowered below a regulatory limitation by decontamination. Therefore, more efficient decontamination technology must be continuously developed. This work describes the practical experiences in the United States and the European countries for NPP decommissioning using these decontamination technologies. When the decommissioning of domestic nuclear power plant is planned and implemented, this work will be helpful as a reference of previous cases.

Flow Characteristics Evaluation in Reactor Coolant System for Full System Decontamination of Kori-1 Nuclear Power Plant (고리1호기 계통제염을 위한 원자로냉각재내 유동 특성 평가)

  • Kim, Hak Soo;Kim, Cho-Rong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.389-396
    • /
    • 2018
  • The Kori-1 Nuclear Power Plant (NPP), WH 2-Loop Pressurized Water Reactor (PWR) operated for approximately 40 years in Korea, was permanently ceased on June 18, 2017. To reduce worker exposure to radiation by reducing the dose rate in the system before starting main decommissioning activities, the permanently ceased Kori-1 NPP will be subjected to full system decontamination. Generally, the range of system decontamination includes Reactor Pressure Vessels (RPV), Pressurizer (PZR), Steam Generators (SG), Chemical & Volume Control System (CVCS), Residual Heat Removal System (RHRS), and Reactor Coolant System (RCS) piping. In order to decontaminate these systems and equipment in an effective manner, it is necessary to evaluate the influence of the flow characteristics in the RCS during the decontamination period. There are various methods of providing circulating flow rate to the system decontamination. In this paper, the flow characteristics in Kori-1 NPP reactor coolant according to RHR pump operation were evaluated. The evaluation results showed that system decontamination using an RHR pump was not effective at decontamination due first to impurities deposited in piping and equipment, and second to the extreme flow unbalance in the RCS caused deposition of impurities.

A Study on Microorganisms Decontamination Using a Vapor-Phase Hydrogen Peroxide System (과산화수소 증기 시스템을 이용한 미생물 제독에 관한 연구)

  • Kim, Yun Ki;Kim, Min Cheol;Yoon, Sung Nyo;Hwang, Hyun Chul;Ryu, Sam Gon
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.279-288
    • /
    • 2013
  • Objectives: Effectiveness and conditions of vapor-phase hydrogen peroxide (VPHP) system on decontamination of Geobacillus stearothermophilus(GS) spores, Escherichia coli (E.coli) and Enterobacteria phage felix01 (felix01) were determined. Methods: The VPHP system was designed to vaporize 35% (w/w) solution of hydrogen peroxide, continuously to inject and withdraw VPHP. The system and VHP 1000ED (Steris) were operated such that dehumidification and conditioning were initiated without samples in the chamber. Then the samples were loaded into and removed. Coupons (glass, anodizing, silicon, viton) with GS spores ($1{\times}10^6$ colony forming unit/mL [CFU/mL]), E.coli ($1{\times}10^7$ CFU/mL) and felix01 ($1{\times}10^7$ plaque forming unit/mL[PFU/mL]), and Biological Indicator (BI) with GS spores ($1{\times}10^6$ CFU/mL) on stainless steel coupons were used. The tested samples were sonicated and vortexed, and then were plated for enumeration, followed by incubation at $55^{\circ}C$, 24 hr for GS spores, and at $37^{\circ}C$, 24 hr for E.coli and felix01. BI analysis in broth culture was only qualitative. Results: The efficacy of the VPHP system on decontamination was almost equivalent to that of VHP 1000ED. The conditions for complete decontamination with the VPHP system was as follows: concentration; 700~450 ppm, relative humidity; approximately 55%, and temperature; $34{\sim}32^{\circ}C$. When comparing the decontamination efficiency among different kinds of coupons, glass was the most effective, however, all kinds of coupons were decontaminated completely after 60 min exposure in both systems. Conclusion: The VPHP system can be recommended as an alternative system for traditional system using ethylene oxide, formaldehyde or chlorine dioxide.