• 제목/요약/키워드: System biology

검색결과 2,784건 처리시간 0.073초

A New Chromogenic Water Sensing System Utilizing Deprotonation and Protonation of Anion Receptor

  • Kim, Young-Hee;Han, Yeon-Kun;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4244-4246
    • /
    • 2011
  • A simple chromogenic system based on 1-fluoride was developed to determine water content in organic solvent. This system utilized deprotonation and protonation of the anion receptor 1. The water content evaluated from this system gave close value to the real water content in the range of 0 to 0.35% in acetonitrile and 0.2 to 0.5% in DMSO. Therefore, protonation and deprotonation phenomenon from the anion receptor by basic anion could be promising method for water sensing system.

Expression of Pseudorabies Virus (PRV) Glycoproteins gB, gC and gD using Bacterial Expression System

  • Yun, Bit-Na-Rae;Bae, Sung-Min;Lee, Jun-Beom;Kim, Hee-Jung;Woo, Soo-Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제23권1호
    • /
    • pp.147-153
    • /
    • 2011
  • The Pseudorabies (PR), also called Aujeszky's disease (AD), is an infectious viral disease caused by an alpha herpes virus and has domestic and wild pigs, as well as a wide range of domestic and wild animals, as the natural host. Pseudorabies virus (PRV) virions contain several envelope glycoproteins. Among them, gB, gC and gD are regarded as the major immunogenic proteins. We expressed these glycoproteins using the bacterial expression system and analyzed recombinant proteins. Expression of glycoproteins gC and gD were observed on SDS-PAGE or Western blot analysis, but gB was not. Optimal concentration of IPTG and inducing time were determined as 1.0 mM and 4 h, respectively, for the expression of both gC and gD in E. coli. A sodium dodecyl sulfate (SDS) was the most efficient detergent in solubilizing insoluble recombinant protein.

G-Networks Based Two Layer Stochastic Modeling of Gene Regulatory Networks with Post-Translational Processes

  • Kim, Ha-Seong;Gelenbe, Erol
    • Interdisciplinary Bio Central
    • /
    • 제3권2호
    • /
    • pp.8.1-8.6
    • /
    • 2011
  • Background: Thanks to the development of the mathematical/statistical reverse engineering and the high-throughput measuring biotechnology, lots of biologically meaningful genegene interaction networks have been revealed. Steady-state analysis of these systems provides an important clue to understand and to predict the systematic behaviours of the biological system. However, modeling such a complex and large-scale system is one of the challenging difficulties in systems biology. Results: We introduce a new stochastic modeling approach that can describe gene regulatory mechanisms by dividing two (DNA and protein) layers. Simple queuing system is employed to explain the DNA layer and the protein layer is modeled using G-networks which enable us to account for the post-translational protein interactions. Our method is applied to a transcription repression system and an active protein degradation system. The steady-state results suggest that the active protein degradation system is more sensitive but the transcription repression system might be more reliable than the transcription repression system. Conclusions: Our two layer stochastic model successfully describes the long-run behaviour of gene regulatory networks which consist of various mRNA/protein processes. The analytic solution of the G-networks enables us to extend our model to a large-scale system. A more reliable modeling approach could be achieved by cooperating with a real experimental study in synthetic biology.

A Simple ELISA for Screening Ligands of Peroxisome Proliferator-activated Receptor γ

  • Cho, Min-Chul;Lee, Hae-Sook;Kim, Jae-Hwa;Choe, Yong-Kyung;Hong, Jin-Tae;Paik, Sang-Gi;Yoon, Do-Young
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.207-213
    • /
    • 2003
  • Peroxisome proliferator-activated receptors (PPARs) are orphan nuclear hormone receptors that are known to control the expression of genes that are involved in lipid homeostasis and energy balance. PPARs activate gene transcription in response to a variety of compounds, including hypolipidemic drugs. Most of these compounds have high affinity to the ligand-binding domain (LBD) of PPARs and cause a conformational change within PPARs. As a result, the receptor is converted to an activated mode that promotes the recruitment fo co-activators such as the steroid receptor co-activator-1 (SRC-1). Based on the activation mechanism of PPARs (the ligand binding to $PPAR{\gamma}$ induces interactions of the receptor with transcriptional co-activators), we performed Western blot and ELISA. These showed that the indomethacin, a $PPAR{\gamma}$ ligand, increased the binding between $PPAR{\gamma}$ and SRC-1 in a ligand dose-dependent manner. These results suggested that the in vitro conformational change of $PPAR{\gamma}$ by ligands was also induced, and increased the levels of the ligand-dependent interaction with SRC-1. Collectively, we developed a novel and useful ELISA system for the mass screening of $PPAR{\gamma}$ ligands. This screening system (based on the interaction between $PPAR{\gamma}$ and SRC-1) may be a promising system in the development of drugs for metabolic disorders.