• Title/Summary/Keyword: System Tuning

Search Result 1,350, Processing Time 0.022 seconds

Database Management System Parameter Tuning Processes for Improving Database System Performance (데이터베이스 시스템 성능 향상을 위한 데이터베이스 관리 시스템 파라미터 튜닝 프로세스)

  • 최용락;윤병권;정기원
    • The Journal of Society for e-Business Studies
    • /
    • v.7 no.1
    • /
    • pp.107-127
    • /
    • 2002
  • Database system parameter tuning is one of database system tuning that achieve to improve performance of database system with application program tuning and data model tuning. By parameter tuning adjusts value of entry that is staled in data dictionary's parameter file that is included to database system, it is thing which make relevant database system can display performance of most suitable. And, it is that achievement is one o( possible tuning method immediately without occurrence of additional expense or involved hardware for database system performance elevation and ashes composition of software. But, it is actuality that administration about parameter practical use is not achieved, and is using Default Value of parameter that database management system offers just as it is systematically. So, this paper presents parameter tuning process that can :achieve Parameter tuning of database system that is operating present systematically, and parameter tuning process each activity important input urea and tuning achievement product. And explain about effect and result that happen by sort database system performance and parameters that it is affinity systematically, and grasp relationships between parameter, and change parameter of string database system. And not that parameter uses contents that specify by fixing when establish database administration system, is going to emphasize and explain that must utilize changing continuously during database system operation. It changes parameter entry value how in various kinds different operation environment and present if must apply, and will arrange effect that this parameter enoy value alteration gets in performance liking into account point that is actuality that is using parameter that define database administrators when install the database system just as it is continually without alteration.

  • PDF

Expert System for ABC Tuning of Once-Through Bboiler

  • Matsumura, S.;Kojima, Y.;Tozaki, T.;Shirasaka, Y.;Suzuki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.744-748
    • /
    • 1989
  • A newly developed Expert System (ES) for the tuning of thermal power plant control equipment is described. The system is furnished with the rules for controller tuning which were obtained by analysis and arranging the data and knowledge from the experts or tuning records. Based on these rules, automatic tuning or setting of the control parameters is performed in real-time base. The performance of the test equipment, a combination of ES and a boiler simulator, was examined in the automatic tuning test for steam pressure, steam temperature, and load controllers of a constant-pressure once-through boiler model. It was confirmed from the test results that the system is quite promising for future application to actual plants, since the tuning results obtained by the proposed system were similar to those by tuning experts.

  • PDF

A fuzzy expert system for auto-tuning PID controllers (자기동조 PID제어기를 위한 퍼지전문가 시스템)

  • 이기상;김현철;박태건;김일우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.398-403
    • /
    • 1993
  • A rule based fuzzy expert system to self-tune PID controllers is proposed in this paper. The proposed expert system contains two rule bases, where one is responsible for "Long term tuning" and the other for "Incremental tuning". The rule for "Long term tuning" are extracted from the Wills'map and the knowledge about the implicit relations between PID gains and important long term features of the output response such as overshoot, damping and rise time, etc., while 'Incremental tuning" rules are obtained from the relations between PID gains and short term features, error and change in error. In the PID control environment, the proposed expert system operates in two phases sequentially. In the first phase, the long term tuning is performed until long term features meet their desired values approximately. Then the incremental tuning tarts with PID gains provided by the long term tuning procedure. It is noticeable that the final PID gains obtained in the incremental tuning phase are only the temporal ones. Simulation results show that the proposed rule base for "Long term tuning" provides superior control performance to that of Litt and that further improvement of control performance is obtained by the "Incremental tuning'.ance is obtained by the "Incremental tuning'.ing'.

  • PDF

System identification method for the auto-tuning of power plant control system with time delay (시간지연을 가진 발전소 제어시스템의 자동동조를 위한 System identification 방법)

  • 윤명현;신창훈;박익수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1008-1011
    • /
    • 1996
  • Most control systems of power plants are using classical PID controllers for their process control. In order to get the desired control performances, the correct tuning of PID controllers is very important. Sometimes, it is necessary to retune PID controllers after the change of system operating condition and system design change, etc. Commercial auto-tuning controllers such as relay feedback controller can be used for this purpose. However, using these controllers to the safety-critical systems of nuclear power plants may be cause of unsafe operation, because they are using test signals for tuning. A new system identification auto-tuning method without using test signal has been developed in this paper. This method uses process input/output signals for system identification of unknown control process. From the model information of control process which was obtained from system identification approach, the optimal PID parameters can be calculated. The method can be used in the safety-critical systems because it is not using test signals during system modeling process.

  • PDF

Self-Tuning Control of Multivariable System (다변수 시스템의 자기동조제어)

  • Lee, D.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.69-78
    • /
    • 1999
  • In the single-input and single-output system, the parameter of plant is scalar polynomial, but in the multiple input and multiple output, it accompanies, being matrix polynomial, the consideration of observable controlability index or problems non-commutation in matrix polynomial as well as degree, and it is more complex to deal with. Therefore, it is thought that a full research on the single-input and single-output system is not sufficient. This paper proposes that problems of minimum variance self-tuning regulator by using numerical calculation example of multivariable system and pole assignment self-tuning regulator.

  • PDF

A Study on Efficiency Improvement by Fine Tuning of Power Plant Control (제어시스템 튜닝에 의한 발전소 효율향상에 관한 연구)

  • Kim, Ho-Yol;Kim, Byoung-Chul;Byun, Seung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1496-1501
    • /
    • 2012
  • A fine tuning on a control system is essential not only for stable operation but also for efficient operation of the power plant. There has been a very few studies on efficiency change by control system tuning. So, it was not clear that if it could be improved or not when the control is stable by fine tuning and how much it could be improved if it works. An accurate algorithm for measurement of the plant efficiency was newly introduced and implemented to measure integrated fuel flow and electricity MW output and to calculate the mean efficiency for given time. As a result, stable operation after fine tuning of control parameters for major controlled variables brought higher efficiency than un-stable operations like a cycling or an oscillation. The plant efficiency has been monitored during various tests and tunings to confirm how much it changes by tuning of the control system on power plant. Now, we can say that the efficiency can be improved in stable operation by fine tuning of the control system.

Auto-Tuning PI control using limitted step response for brushless DC motor speed control (브러시리스 직류전동기 속도 제어를 위한 한계스텝응답 특성을 이용한 Auto-tuning PI 제어)

  • 전장현;전인효최중경박승엽
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.203-206
    • /
    • 1998
  • This paper describes the procedure of getting information about auto-tuning of PID regulator by the injection of high step input, called limited input, during a transient time of control. The key point is that system identification and control could be continuously executed. This means that the system information obtained by limited input despite of system uncertainty can be continuously applied to the PI regulator. Simulation and experiment result of brushless DC motor system having monotone increasing step response demonstrate the usefulness of proposed auto-tuning algorithm.

  • PDF

A Study on an AVR Parameter Tuning Method using Real-lime Simulator (실시간 시뮬레이터를 이용한 AVR의 파라미터 튜닝에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.69-75
    • /
    • 2002
  • AVR parameter tuning for voltage control of power system generators has generally been performed with the analytic methods and the simulation methods, which mostly depend on off-line linear mathematical models of excitation control system. However, due to the nonlinear nature of excitation control system, excitation control system performance of the tuned Parameters using the above conventional tuning methods may not be appropriate for some operating conditions. This paper presents an AVR parameter tuning method using actual on-line data of the excitation control system with the parameter optimization technique. As this method utilizes on-line operating data of the target excitation control system not the mathematical model of the system, it can overcome the limitation of model uncertainty Problems in conventional method, and it can tune the AVR parameter set which gives desired performance at the operating conditions. For the verification of proposed tuning method, two case studies with scaled excitation systems and the real-time power system simulator are presented.

Scaling Factor Tuning Method for Fuzzy Control System (퍼지제어 시스템을 위한 이득동조 방법)

  • 최한수;김성중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.819-826
    • /
    • 1994
  • This paper deals with a self-tuning fuzzy controller. The fuzzy controller is constructed with linguistic rules which consist of the fuzzy sets. Each fuzzy set is characterized by a membership function. The tuning fuzzy controller has paramenters that are input/output scaling factors to effect control output. In this paper we propose a tuning method for the scaling factor Computer simulations carried out on first-order and second-order processes will show how the present tuning approach improves the transient and the steady-state characteristics of the overall system.The applicability of the proposed algorithm is certified by computer simulation results.

On the Auto-Tuning of a Discrete PID Controller Based on the Ziegler and Nichols's Method (Ziegler-Nichols 방법을 이용한 이산형 PID제어기의 자동동조)

  • 이영일;권욱현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.774-781
    • /
    • 1991
  • This paper proposes an auto-tuning method of a discrete -PIC controllers which is based on the Ziegler and Nichols's PID Tuning Rule. This tunign rule is derived using the Pade's first order approximation and it prevents the performance degradation caused by the time-delay effect of zero order holder when the Ziegler-Nichols tuning rule is applied to a discrete PID controller. A simple and practical auto-tuning method is proposed through combining this discrete tuning rule with the relay control. The auto-tuning scheme is implemented on a microprocessor based system and is applied to a position control system to show the effectiveness of the discrete tuning rule.

  • PDF