• Title/Summary/Keyword: System Throughput.

Search Result 1,747, Processing Time 0.033 seconds

A Study on Multi-criteria Trade-off Structure between Throughput and WIP Balancing for Semiconductor Scheduling (반도체/LCD 스케줄링의 다목적기준 간 트레이드 오프 구조에 대한 연구)

  • Kim, Kwanghee;Chung, Jaewoo
    • Korean Management Science Review
    • /
    • v.32 no.4
    • /
    • pp.69-80
    • /
    • 2015
  • The semiconductor industry is one of those in which the most intricate processes are involved and there are many critical factors that are controlled with precision in those processes. Naturally production scheduling in the semiconductor industry is also very complex and studied by the industry and academia for many years; however, still there are many issues left unclear in the problem. This paper proposes an multi-objective optimization-based scheduling method for semiconductor fabrication(fab). Two main objectives are throughput maximization and meeting target production quantities. The first objective aims to reduce production cost, especially the fixed cost incurred by a large investment constructing a new fab facility. The other is meeting customer orders on time and also helps a fab maintain stable throughput through controlled WIP balancing in the long run. The paper shows a trade-off structure between the two objectives through experimental studies, which provides industrial practitioners with useful references.

Optimization Algorithm for Spectrum Sensing Delay Time in Cognitive Radio Networks Using Decoding Forward Relay

  • Xia, Kaili;Jiang, Xianyang;Yao, Yingbiao;Tang, Xianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1301-1312
    • /
    • 2020
  • Using decode-and-forward relaying in the cognitive radio networks, the spectrum efficiency can improve furthermore. The optimization algorithm of the spectrum sensing estimation time is presented for the cognitive relay networks in this paper. The longer sensing time will bring two aspects of the consequences. On the one hand, the channel parameters are estimated more accurate so as to reduce the interferences to the authorized users and to improve the throughput of the cognitive users. On the other hand, it shortens the transmission time so as to decease the system throughput. In this time, it exists an optimal sensing time to maximize the throughput. The channel state information of the sub-bands is considered as the exponentially distributed, so a stochastic programming method is proposed to optimize the sensing time for the cognitive relay networks. The computer simulation results using the Matlab software show that the algorithm is effective, which has a certain engineering application value.

Performance Analysis of Multiple-Hop Wireless Body Area Network

  • Hiep, Pham Thanh;Hoang, Nguyen Huy;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.419-427
    • /
    • 2015
  • There have been increases in the elderly population worldwide, and this has been accompanied by rapid growth in the health-care market, as there is an ongoing need to monitor the health of individuals. Wireless body area networks (WBANs) consist of wireless sensors attached on or inside the human body to monitor vital health-related problems, e.g., electrocardiograms (ECGs), electroencephalograms (EEGs), and electronystagmograms (ENGs). With WBANs, patients' vital signs are recorded by each sensor and sent to a coordinator. However, because of obstructions by the human body, sensors cannot always send the data to the coordinator, requiring them to transmit at higher power. Therefore, we need to consider the lifetime of the sensors given their required transmit power. In the IEEE 802.15.6 standard, the transmission topology functions as a one-hop star plus one topology. In order to obtain a high throughput, we reduce the transmit power of the sensors and maintain equity for all sensors. We propose the multiple-hop transmission for WBANs based on the IEEE 802.15.6 carrier-sense multiple-access with collision avoidance (CSMA/CA) protocol. We calculate the throughput and variance of the transmit power by performing simulations, and we discuss the results obtained using the proposed theorems.

Optimal Power and Spectrum Allocation Scheme in Multicell WRAN (Multicell WRAN에서의 최적 전력 및 주파수 할당 기법)

  • Hwang, In-Kwan;Lim, Yeon-Jun;Cho, Hae-Keun;Song, Myoung-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.666-675
    • /
    • 2008
  • The IEEE 802.22 standard is being developed with the target of improving the efficiency of spectrum utilization and importing the new wireless communication service. The WRAN standard based on Cognitive Radio is being processed for sharing TV bands. In this paper, the efficient spectrum allocation scheme and the optimal power allocation scheme, Partial Constant Power Water Filling (PCPWF), are proposed to maximize the channel capacity and spectrum efficiency and minimize the interference between adjacent cells. And we maximize the system throughput and fairness by using proposed dynamic cell plan that efficiently allocates channel. The results of the simulations are presented to verify the utilization of our proposed scheme.

Performance Analysis of Channel Multiple Access Technique for the Multimedia Services via OBP Satellite (OBP(On-Board Processing)위성의 멀티미디어 서비스를 위한 채널 다중접속 방식의 성능 분석)

  • 김덕년;이정렬
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.83-88
    • /
    • 2001
  • In this paper, System performance parameters such as throughput, blocking probability and delay have been analyzed and expressed as a function of demanding traffic and service terminating probability, and we centers our discussion at particular downlink port of satellite switch which is capable of switching the individual spot beam and processing the information signals in the packet satellite communications with demand assigned multiple access technique. Delay versa throughput as a function of traffic parameters with several service terminating probability can be derived via mathematical formulation and simulation and the relative change of transmission delay was compared.

  • PDF

Service Differentiation in IEEE 802.11-based Wireless LAN and Throughput Analysis (IEEE 802.11기반 무선랜에서의 서비스 차별화와 성능 분석)

  • Lee Gye-Min;Kang Yung-Gyung;Choi Chang-Won
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.151-164
    • /
    • 2006
  • The DCF of IEEE 802.11 standard coordinates transmissions onto the shared communication channel based on CSMA/CA protocol. Currently, 802,11 is the most widely deployed wireless LAN standard. In this paper, for 802.11-based wireless LAN we propose a service differentiation scheme adopting different contention window sizes and retransmission schemes for two different types of data packets and we present a Markov model for the state of a given station under a finite load traffic condition. We then derive an algorithm to find the transmission probability and the throughput. The proposed model is validated through simulation under various system settings.

  • PDF

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

Efficient Hybrid ARQ with Space-Time Coding and Low-Complexity Decoding (Space-Time Coding과 낮은 복잡도의 복호 방범을 사용한 효과적인 Hybrid ARQ 기법)

  • Oh Mi-Kyung;Kwon Yeong-Hyen;Park Dong-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1222-1230
    • /
    • 2005
  • We aim at increasing the throughput of the hybrid automatic retransmission request (HARQ) protocol in Space-Time (ST) coded multi-antenna transmission systems. By utilizing reliability information at the decoder, we obtain an improved probability of successful decoding, which enhances the overall system throughput at low-complexity. Simulations and analytical results demonstrate the performance of our scheme in impulse noise environment as well as AWGN and fading multi-input multi-ouput (MIMO) channels.

Performance Enhancement using Hierarchical Modulation in Distributed Relaying Systems (분산 릴레이 시스템에서 계층적 변조를 이용한 성능 향상)

  • Choi, Du-Hwan;Kang, Dong-Kwan;Park, Jae-Hyun;Kim, Duk-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.18-26
    • /
    • 2009
  • Various relay technologies have been considered in wireless communication systems to enlarge the coverage and to enhance the system throughput. However, the coverage is limited by its modulation levels and additional time slot(s) is required for relaying. In the paper, by applying the hierarchical modulation to two-relay systems, two-hop relaying can be implemented instead of three hops, and both throughput and coverage can be enhanced. Throughout simulation analysis, the coverage extension is evaluated for different modulation levels and the total throughput is increased by up to two times.

Interference-Aware Channel Assignment Algorithm in D2D overlaying Cellular Networks

  • Zhao, Liqun;Wang, Hongpeng;Zhong, Xiaoxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1884-1903
    • /
    • 2019
  • Device-to-Device (D2D) communications can provide proximity based services in the future 5G cellular networks. It allows short range communication in a limited area with the advantages of power saving, high data rate and traffic offloading. However, D2D communications may reuse the licensed channels with cellular communications and potentially result in critical interferences to nearby devices. To control the interference and improve network throughput in overlaid D2D cellular networks, a novel channel assignment approach is proposed in this paper. First, we characterize the performance of devices by using Poisson point process model. Then, we convert the throughput maximization problem into an optimal spectrum allocation problem with signal to interference plus noise ratio constraints and solve it, i.e., assigning appropriate fractions of channels to cellular communications and D2D communications. In order to mitigate the interferences between D2D devices, a cluster-based multi-channel assignment algorithm is proposed. The algorithm first cluster D2D communications into clusters to reduce the problem scale. After that, a multi-channel assignment algorithm is proposed to mitigate critical interferences among nearby devices for each D2D cluster individually. The simulation analysis conforms that the proposed algorithm can greatly increase system throughput.