• Title/Summary/Keyword: System Test Model

Search Result 5,172, Processing Time 0.034 seconds

DEM_Comp Software for Effective Compression of Large DEM Data Sets (대용량 DEM 데이터의 효율적 압축을 위한 DEM_Comp 소프트웨어 개발)

  • Kang, In-Gu;Yun, Hong-Sik;Wei, Gwang-Jae;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.265-271
    • /
    • 2010
  • This paper discusses a new software package, DEM_Comp, developed for effectively compressing large digital elevation model (DEM) data sets based on Lempel-Ziv-Welch (LZW) compression and Huffman coding. DEM_Comp was developed using the $C^{++}$ language running on a Windows-series operating system. DEM_Comp was also tested on various test sites with different territorial attributes, and the results were evaluated. Recently, a high-resolution version of the DEM has been obtained using new equipment and the related technologies of LiDAR (LIght Detection And Radar) and SAR (Synthetic Aperture Radar). DEM compression is useful because it helps reduce the disk space or transmission bandwidth. Generally, data compression is divided into two processes: i) analyzing the relationships in the data and ii) deciding on the compression and storage methods. DEM_Comp was developed using a three-step compression algorithm applying a DEM with a regular grid, Lempel-Ziv compression, and Huffman coding. When pre-processing alone was used on high- and low-relief terrain, the efficiency was approximately 83%, but after completing all three steps of the algorithm, this increased to 97%. Compared with general commercial compression software, these results show approximately 14% better performance. DEM_Comp as developed in this research features a more efficient way of distributing, storing, and managing large high-resolution DEMs.

A Study on the Effect of Rudder Area with Reference to Changes in Span Distance on Course Stability of a Ship (타의 스팬길이에 따른 면적 변화가 침로안정성에 미치는 영향에 관한 연구)

  • Sohn, K.H.;Lee, G.W.;Kim, H.S.;Kim, Y.S.;Ha, M.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.1-14
    • /
    • 1996
  • Especially in the case of a full form ship, the stability on course can be considered to become severest among 4 items of criteria in Interim Standards for Ship Maneuverability adopted by IMO in 1993. The purpose of this study is to find some ideas for the improvement of stability on course through changes in rudder area with reference to span distance. In this paper, we established the formula on the relation between the experimental constants relevant to rudder normal force and hydrodynamic derivatives of hull-propeller-rudder system. We carried out various kinds of captive model test relevant to rudder normal force etc., and evaluated hydrodynamic derivatives of hull-propeller-rudder system, and analyzed the stability on course with the parameter of changes in rudder area. Furthermore, we also discussed effects of changes in rudder area on maneuvering performance including stability on course, based on computer simulation. As a result, it is clarified that there is a possibility that stability on course may become bad through an increase of rudder area. The reason for the bad stability on course is that the void space between the upper edge of rudder and the lower part of stern overhang decreases. This space change exerts a great influence on straightening coefficient of incoming flow to rudder in maneuvering motion, which has close relation to stability on course.

  • PDF

The Structural Relationships among the Related Variables of University Students' Satisfaction (대학생의 만족도와 관련된 변인들 간의 구조적 관계)

  • Son, Kyung-Ae;Lee, Deog-Ro
    • Management & Information Systems Review
    • /
    • v.32 no.4
    • /
    • pp.1-25
    • /
    • 2013
  • The purpose of this study was to test the structural relationships among the related variables of university students' satisfaction. This study utilized nation-wide survey data previously collected from 1400 students distributed across 32 universities in Korea. NCSI model was used as a theoretical framework. Using the AMOS 17.0, the structural relationships among six variables were tested, including students' expectancy level, perceived quality, perceived value, satisfaction, complaint rate, and loyalty. The major findings of the study are as follows: First, students' expectancy level had a positive effect on perceived quality; but had no significant effect either on perceived value or on satisfaction. Second, perceived quality had positive effects on perceived value and satisfaction; and perceived value also had a positive effect on satisfaction. Third, students' satisfaction had a negative effect on complaint rate; but had a positive effect on loyalty. Fourth, students' complaint rate had a negative effect on loyalty. The study results imply that among the related variables of students' satisfaction, perceived quality and value of the products work as critical variables, and complaint rate and loyalty directly relate to students' satisfaction. The study suggested that in order to enhance students' satisfaction, universities employ the total quality system and the students' complaints resolution system.

  • PDF

Analysis of Resistance Performance of a Ship having a Large Attitude based on CFD (CFD에 의한 자세변화가 큰 선박의 저항성능 해석)

  • Kim, Hyun-Soo;Park, Dong-Woo;Yang, Young-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.961-967
    • /
    • 2019
  • This research presents an efficient method based on computational fluid dynamics (CFD) for estimating the resistance performance of a ship with a large settlement amount and a dynamic trim. The settlement of the inviscid flow analysis and the results of dynamic trim were used to set a large attitude for the ship prior to performing a viscous flow analysis; a viscous flow analysis was subsequently performed by Dynamic Fluid Body Interaction (DFBI). This method is termed as method I, in which a simple grating system can be used without employing the overset mesh technique by setting many attitudes before interpretation. Thus, method I is advantageous in reducing calculation time and improving calculation accuracy. The viscous flow analysis was performed using a commercial CFD code STAR-CCM+. Compared with the final convergence result, the first viscous flow analysis result of method I exhibited a variation of less than 1 % of resistance. The result was obtained by changing the gratings each time an attitude is changed at each calculation stage, based on the DFBI method provided to STAR-CCM+ using a simple grating system, which is not a superposed grating. This method is termed as method II. Compared with method II of resistance, method I exhibited a dif erence of 0.03-0.6 % for linear velocity. The results of method I were confirmed to be qualitatively and quantitatively appropriate through comparison with several trillion simulations.

Analysis and Recognition of Behavioral Response of Selected Insects in Toxic Chemicals for Water Quality Monitoring (수질 모니터링을 위한 유해 물질 유입에 따른 생물체의 행동 반응 분석 및 인식)

  • Kim, Cheol-Ki;Cha, Eui-Young
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.663-672
    • /
    • 2002
  • In this paper, Using an automatic tracking system, behavior of an aquatic insect, Chironomus sp. (Chironomidae), was observed in semi-natural conditions in response to sub-lethal treament of a carbamate insecticide, carbofuran. The fourth instar larvae were placed in an observation cage $(6cm\times{7cm}\times{2.5cm)}$ at temperature of $18^\circ{C}$ and the light condition of 10 time (light) : 14 time (dark). The tracking system was devised to detect the instant, partial movement of the insect body. Individual movement was traced after the treatment of carbofuran (0.1ppm) for four days 2days : before treatment, 2 days : after treatment). Along with the other irregular behaviors, "ventilation activity", appearing as a shape of "compressed zig-zag", was more frequently observed after the treatment of the insecticide. The activity of the test individuals was also generally depressed after the chemical treatment. In order to detect behavioral changes of the treated specimens, wavelet analysis was implemented to characterize different movement patterns. The extracted parameters based on Discrete Wavelet Transforms (DWT) were subsequently provided to artificial neural networks to be trained to represent different patterns of the movement tracks before and after treatments of the insecticide. This combined model of wavelets and artificial neural networks was able to point out the occurrence of characteristic movement patterns, and could be an alternative tool for automatically detecting presences of toxic chemicals for water quality monitoring. quality monitoring.

Development of Ankle Power Assistive Robot using Pneumatic Muscle (공압근육을 사용한 발목근력보조로봇의 개발)

  • Kim, Chang-Soon;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.771-782
    • /
    • 2017
  • This paper describes the development of a wearable robot to assist ankle power for the elderly. Previously developed wearable robots have generally used motors and gears to assist muscle power during walking. However, the combination of motor and reduction gear is heavy and has limitations on the simultaneous control of stiffness and torque due to the friction of the gear reducer unlike human muscles. Therefore, in this study, Mckibben pneumatic muscle, which is lighter, safer, and more powerful than an electric motor with gear, was used to assist ankle joint. Antagonistic actuation using a pair of pneumatic muscles assisted the power of the soleus muscles and tibialis anterior muscles used for the pitching motion of the ankle joint, and the model parameters of the antagonistic actuator were experimentally derived using a muscle test platform. To recognize the wearer's walking intention, foot load and ankle torque were calculated by measuring the pressure and the center of pressure of the foot using force and linear displacement sensors, and the stiffness and the torque of the pneumatic muscle joint were then controlled by the calculated ankle torque and foot load. Finally, the performance of the developed ankle power assistive robot was experimentally verified by measuring EMG signals during walking experiments on a treadmill.

Immunoregulatory Effects of Saengshik on DSS-Induced Inflammatory Bowel Disease in Mouse Model System (DSS로 유도된 염증성 장 질환 마우스 동물모델에서 생식이 장관 임파조직내 면역조절 기능에 미치는 영향)

  • Lim, Beong-Ou;Jeong, Yong-Jun;Park, Mi-Hyoun;Kim, Jong-Dai;Hwang, Sung-Joo;Yu, Byung-Pal
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.1
    • /
    • pp.32-42
    • /
    • 2007
  • This study was conducted on the immunoregulatory effect of Saengshik on gut-associated lymphoid tissue with inflammatory bowel disease. Although the contents of IgA increased in mesenteric lymph node, IgE content was suppressed by Saengshik. The same results were found in spleen, but IgA and IgE responses were very weak. Concentration of fecal IgA was high from the first day through the third day in Saengshik group. In DSS + Saengshik group, concentration of IgA was high till the 2nd day and it maintained the highest level among the test groups on 5th day. Concentration of IFN-gamma and IL-2 was the highest in the Saengshik group, but the concentration of TNF-alpha was lower in DSS + Saengshik compared to DSS. The expressions of STAT1 in Saengshik group were high, while those of STAT6 were low According to these findings, Saengshik exhibited effectiveness via increasing the IgA production, suppressing the IgE production, followed by inhibiting the production of IL-4 and IL-10. Saengshik also strengthened the immune system and alleviated injury in DSS -induced inflammation.

Improvement of Basic Design Process for Submarines by Integration of SE-Based Technical Review and Requirements Management Process (SE 기반 기술검토 및 요구사항 관리 프로세스의 통합을 통한 잠수함 기본설계 프로세스의 개선)

  • Shin, Sung-Chul;Park, Jin-Won;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.96-104
    • /
    • 2018
  • Military vessels are complex weapon systems consisting of various integrated onboard equipment. Since their acquisition of military equipment takes a long period of time and a prototype ship is deployed and tested, vessel development has relied on its proprietary process. However, due to the growing complexity of onboard equipment technology, application of systems engineering (SE) process has become indispensable. Nonetheless, an effective design process complementing the existing design with the SE has not yet been developed. As such, we have studied an improved basic design process for submarines based on SE. To do so, we analyzed the processes for the basic design, technical review, and requirement management. Included reviews and requirements are SRR, SFR and PDR, and SSRS, SSS, and SSDD. By combining the results in the SE framework, we built an improved basic design process that can be applied in parallel with the SE-based technical review and requirement management. To assess the process, we applied our proposed model to the submarine development undergoing the basic design phase. It is possible to effectively manage the requirements, design artifacts and improve traceability, and also utilize them as test and evaluation materials. The SE-based basic design process is expected to be useful in other kinds of vessel design.

Analysis of a Gas Mask Using CFD Simulation (CFD모사기법을 이용한 가스 여과기 성능 해석)

  • Jeon, Rakyoung;Kwon, Kihyun;Yoon, Soonmin;Park, Myungkyu;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Special chemical warfare agents are lethal gases that attack the human respiratory system. One of such gases are blood agents that react with the irons present in the electron transfer system of the human body. This reaction stops internal respiration and eventually causes death. The molecular sizes of these agents are smaller than the pores of an activated carbon, making chemical adsorption the only alternative method for removing them. In this study, we carried out a Computational Fluid Dynamics simulation by passing a blood agent: cyanogen chloride gas through an SG-1 gas mask canister developed by SG Safety Corporation. The adsorption bed consisted of a Silver-Zinc-Molybdenum-Triethylenediamine activated carbon impregnated with copper, silver, zinc and molybdenum ions. The kinetic analysis of the chemical adsorption was performed in accordance with the test procedure for the gas mask canister and was validated by the kinetic data obtained from experimental results. We predicted the dynamic behaviors of the main variables such as the pressure drop inside the canister and the amount of gas adsorbed by chemisorption. By using a granular packed bed instead of the Ergun equation that is used to model porous materials in Computational Fluid Dynamics, applicable results of the activated carbon were obtained. Dynamic simulations and flow analyses of the chemical adsorption with varying gas flow rates were also executed.

A Study on the Vibration Characteristics of Attitude Maneuvering of Satellite (위성의 자세기동에 따른 진동특성에 관한 연구)

  • Pyeon, Bong-Do;Bae, Jae-Sung;Kim, Jong-Hyuk;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.23-31
    • /
    • 2019
  • The design requirements of modern satellites vary depending on the purpose of operation. Like conventional medium and large-scale satellites, small satellites which operate on low orbit may also serve military purposes. As a result, there is increased demand for high-resolution photos and videos and multi-target observation becomes important. The most important design parameter for multi-target observation is the satellites' maneuverability. For increased maneuverability, the miniaturization is required to increase the stiffness of the satellite as this decreases the mass moment of inertia of the satellite. In the case of a solar panel having relatively low stiffness compared to the satellites' body, vibrations are generated when the attitude maneuver is performed, which greatly influences the image acquisition. For verification of such vibrational characteristics, the satellites is modeled as a reduced model, and experimental zig for simulating attitude maneuver is introduced. A rigidity simulator for simulating the stiffness of the satellite is also proposed. Additionally, the objective of the experimental method is to simulate the maneuvering angle of the satellite based on the winding length of the wire using a step motor, and to experimentally verify the vibration characteristics of the satellite body and the solar panel generated during the maneuvering test.