• Title/Summary/Keyword: System Safety Engineering

Search Result 7,756, Processing Time 0.046 seconds

A Development of a Seismic Vulnerability Model and Spatial Analysis for Buildings (건물에 대한 지진취약도 모델링 및 공간 분석)

  • Kim, Sang-Bin;Kim, Seong-Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.9-18
    • /
    • 2020
  • The purpose of this study is to suggest a method of predicting seismic vulnerability and safety conditions of each building in a targeted area. The scope of this study includes 'developing a simulation model for precaution activities,' 'testing the validity of the developed model', From the facility point of view, target of this study is a local building system. According to the literature review, the number of earthquake prediction modeling and cases with GIS applied is extremely few and the results are not proficient. This study is conducted as a way to improve the previous researches. Statistic analyses are conducted using 348 domestic and international data. Finally, as a result of the series of statistical analyses, an adequate model is developed using optimization scale method. The ratio of correct expectation is estimated as 87%. In order to apply the developed model to predict the vulnerability of the several chosen local building systems, spatial analysis technique is applied. Gangnam-gu and Jongro-gu are selected as the target areas to represent the characteristics of the old and the new downtown in Seoul. As a result of the analysis, it is discovered that buildings in Gangnam-gu are relatively more dangerous comparing to those of Jongro-gu and Eunpyeong-gu.

A Study on The Ignition Limit of Flammable Gases by Discharge Spark of Resistive Circuit (저항회로의 개폐불꽃에 의한 폭발성 가스의 점화한계에 관한 연구)

  • Lee Chun-Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.106-112
    • /
    • 1997
  • This study measured the ignition limits of methane-air, propane-air, ethylene-air, and hydrogen-air mixture gases by discharge spark of D.C. power resistive circuit. The used experimental device is the IEC type spark ignition test apparatus, it consists of explosion chamber and supply -exhaust system of mixture gas. Mixture gases (methane-air, propane-air, ethylene-air, and hydrogen-air) were put into explosion chamber of IEC type spark ignition test apparatus, then it was confirmed whether ignition was made by 3,200 times of discharge spark between tungsten electrode and cadmium electrode. The ignition limits were found by increasing or decreasing the value of current. For the exact experiment, the ignition sensitivity was calibrated before and after the experiment in each condition. The ignition limits were found by changing the value of concentration of each gas-air mixture in D.C. 24 [V] resistive circuit. As the result of experiment, it was found that the minimum ignition limit currents exist at the value of methane-air 8.3 [$Vol\%$], propane-air 5.25[$Vol\%$], ethylene-air 7.8 [$Vol\%$], and hydrogen-air 21[$Vol\%$] mixture gases. For each the minimum ignition concentration of gases, the relationships between voltage and minimum ignition current were found. The results are as follows. - The minimum ignition limits are decreasing in the order of methane, propane, ethylene, and hydrogen. - The value of ignition current is inversely proportional to the value of source voltage. - The minimum ignition limit currents increase sharply at more than 2 [A]. The reason is caused by overheating the electrode.

  • PDF

Development of Collision Scenario-Based Evaluation System for the Cognitive Performance of Marine Officers (충돌시나리오 기반의 항해사 인지능력 평가시스템 개발)

  • Kim, Hong-Tae;Barentt, Mike;Yang, Won-Jae
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.629-635
    • /
    • 2007
  • Reduced crew performance is frequently cited as a major causal factor in maritime accident causation. Although considerable research has been conducted on the hours of work undertaken by seafarers through interviews and the analysis of records, experimental studies to observe the effects of factors such as high workload, shift patterns, stress, sleep deprivation and disturbance on the cognitive performance of mariners have been limited. Other safety-critical transport industries, such as aviation and rail, have developed fatigue management tools to help manage the work patterns of their operators. Such a tool for mariners would assist shipboard crew, marine pilots and shore management in planning and improving work schedules. The overall aim of this paper is to determine a fatigue factor, which can be applied to human performance data, as part of a software program that calculates total cognitive performance. This program enables us to establish the levels of cognitive performance of a group of marine pilots to test a decision-making task based on radar information. This paper addresses one of the factors that may contribute to the determination of various fatigue factors: the effect of different work patterns on the cognitive performance of a marine pilot.

Concepts of Disaster Prevention Design for Safety in the Future Society

  • Noh, Hwang-Woo;Kitagawa, Keiko;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.54-61
    • /
    • 2014
  • In this paper, we propose a pioneering concept of DPD(Disaster Prevention Design) to realize a securable society in the future. Features of danger in the future society are expected to be diverse, abrupt occurring, large scale, and complicated ways. Due to increment of dangers with their features of uncertainty, interactivity, complexity, and accumulation, human-oriented design concept naturally participates in activities to prevent our society against disasters effectively. We presented DPD is an essential design activity in order to cope with dangers expected in the future societies as well as realize securable environments. DPD is also an integrated design aids including preemptive protections, rapid preparing, recovery, and interactive cooperation. We also expect these activities of DPD is effective for generation of new values in the market, satisfaction of social needs, expansion of design industry, and a novel chance for development in the future society. Throughout this paper, we submit various aspects of DPD concepts including definition, classification, scope, necessity, strategy, influencing elements, process, and its principle. We expect these concepts will be the seed and/or basement of DPD research for the future works. For the direction of study for DPD in the future, we emphasize alarm system for preemptive protection rather than recovery strategy for the damage occurred. We also need to research about progressive prevention techniques and convergence with other areas of design. In order to transfer the concept of product design from facility-oriented mechanism to human-oriented one, we should develop new kinds of city basis facilities, public-sense design concepts referred to social weak-party, e-Learning content design preparing disasters, and virtual simulation design etc. On the other hand, we have to establish laws and regulations to force central and/or provincial governments to have these DPD strategies applying their regional properties. Modern design activities are expanding to UI(user interface) content design area overcoming the conventional design concept of product and/or service. In addition, designers are recognized as art directors or life stylists who will change the human life and create the social value. DPD can be divided into prevention design, preparedness design, response design, and recovery design. Five strategies for successful DPD are Precaution-oriented, Human-oriented, Sense-oriented, Legislation, and Environment Friendly Strategies.

Acoustic Emission Monitoring of Incipient Failure in Journal Bearing Part II : Intervention of Foreign Particles in Lubrication (음향방출을 이용한 저어널 베어링의 조기파손감지(II) - 윤활유 이물질 혼입의 영향 및 감시 -)

  • Yoon, Dong-Jin;Kwon, Oh-Yang;Jung, Min-Hwa;Kim, Kyung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.122-131
    • /
    • 1994
  • Journal bearings in the rotating machineries are vulnerable to the contamination or the insufficient supply of lubricating oil, which is likely to be the cause of unexpected shutdown or malfunction of these systems. Various destructive and nondestructive testing methods had been used for the reduction of maintenance cost and the operational safety problems due to the accidents related to bearing damages. In this experimental approach, acoustic emission monitoring is employed to the detection of incipient failure caused by intervention of foreign particles most probable in the journal bearing systems. Experimental schedules for the intervention of foreign particles was composed to be more quantitative and systematic than last study in consideration of minimum oil film thickness and particle size. The experiment was conducted under such designed conditions as inserting alumina particles to the lubrication layer in the simulated journal bearing system. Several parameters such as AE rms level, waveform, AE energy distribution and other AE event parameters are used for analysis and characterization of damage source. The results showed that the history of damage was well correlated with the changes of AE rms level and the type of damage source signal can be verified using other informations such as waveform, distributions of AE parameters etc.

  • PDF

Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes (SG Tube 축방향 노치 균열의 정량적 EC 신호평가)

  • Min, Kyong-Mahn;Park, Jung-Am;Shin, Ki-Seok;Kim, In-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.374-382
    • /
    • 2009
  • Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes.

Considerations on the Safety of Electric Caps Based on Measured Electrical Resistivity of Rock Samples (암석의 전기비저항 측정을 통한 전기뇌관의 사용 안전성 검토)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Shin, Seung-Wook;Kim, Soo-Lo
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.19-27
    • /
    • 2016
  • Much care should be taken when electric caps are used in blast site than when non-electric initiation systems are used. This is because electric caps can cause premature firing or misfires if stray currents of high magnitude flow into the blasting circuit. If the rock has higher electrical conductivity or lower electrical resistivity, such risks will be increased because the rock will provide more passages for the stray currents to flow into the blasting circuit. In this study, several rock samples obtained at a blast site were tested for electrical resistivity to decide whether electric caps could be used or not in the site. The measured electrical resistivity was $39{\sim}47{\Omega}{\cdot}m$ for the rock samples that had a higher content of metal sulfides. Contrary, the resistivity was $15000{\sim}21000{\Omega}{\cdot}m$ for ordinary rocks. Especially, in the case of the rock of electric resistivity of $39{\Omega}{\cdot}m$, only 2-V electric potential enables a stray current to flow through the rock of 1-m length, which can cause the premature firing of a detonator whose initiation current is 0.4 A. This result shows that electric initiation system should not be used in the site because rocks containing much amount of metal sulfides are widely distributed there.

A Study on Waste Heat Recycling of Plasma Melting System (플라즈마 용융 공정시의 폐열 재활용 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2006
  • The purpose of this research is to design an imitation boiler similar to the waste heat boiler installed on a plasma melting furnace in order to acquire a capability of a thermal design as to the circulation of heat and the discharge of noxious gas inside a boiler and to improve the efficiency of a waste heat boiler using the CFD (Computation Fluid Dynamics) program. The position of corrosion and the generation of a clinker inside a boiler due to temperature changes, combustion gas flows, and corrosive gases inside a boiler are examined to design the structure of an efficient boiler and recycle energy. As a result of this research, the boiler installed on a plasma melting furnace met the conditions of design by cooling the combustion gases discharged after the second combustion from an exhaust port, originally at 1,200 degrees Celsius, down to around 450 degrees Celsius. On the other hand, the circulation of corrosive gases (SOx and HCL) may lead to the generation of corrosion or a clinker in the upper and lower parts of an exhaust port more easily than any other parts of a boiler. Accordingly, the corrosion on the inside and outside walls of a boiler may result in a shortened lifespan of a boiler and an inability to recycle waste heat in an efficient manner. A prevention against corrosion at high and low temperatures needs to be considered in detail.

  • PDF

Numerical Investigation on the Effect of Surface Tension Change of Liquefied $CO_2$ Droplets on their Ascending Speed (액화이산화탄소 유적의 수직 상승속도에 미치는 표면장력 변화의 영향에 대한 수치연구)

  • Cho, Yoon-Tae;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.160-163
    • /
    • 2008
  • $CO_2$ ocean sequestration is being considered as a way to earn a frame of time to change other industrial life pattern to overcome the global warming crisis. The method is to dilute the captured $CO_2$ into ocean by ejecting the liquefied $CO_2$ through nozzles. The main issue of such method is the effectiveness and safety, and in both problems the rising speed of those LCO2 droplet is the key parameter. In this paper, the rising speed of LCO2 droplets is numerically studied including the effect of the surfactant which can be residing along the density interface of the droplets. A front tracking method with a simple surface tension model is developed and the rising speed of the droplets is carefully investigated with varying the various parameters. It is demonstrated that the variable surface tension can change the deformation of the droplet, the flow near the interface, and the rising speed.

  • PDF

A Study on the Estimation of Discharge in Unsteady Condition by Using the Entropy Concept (엔트로피 개념에 의한 부정류 유량 산정에 관한 연구)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6159-6166
    • /
    • 2012
  • A discharge measurement is difficult in flood season which is especially important in the water resources field and the continuous discharge measurement for all rivers is impossible on the present system. So, the stage-discharge curve has been used for a long time to produce discharge data of rivers. However, there has been problems from a reliability angle due to the fact that this method uses only stage-discharge relationship, although the stage-discharge curve has the convenience. Therefore, a new mean velocity equation was derived by using Chiu's 2D velocity formula of the entropy concept in this paper. The derived equation reflected hydraulic characteristics such as the depth, gravity acceleration, hydraulic radius, energy slope, kinematic coefficient of viscosity, etc. and estimated also a maximum velocity. In addition, this method verified the relationship between a mean and maximum velocity and estimates an equilibrium state ${\phi}(M)$ well presenting properties of a river cross section as the results. The mean velocity was estimated by using the equilibrium state ${\phi}(M)$, and then the discharge was estimated. To prove this equation to be accurate, the comparison between the measured and estimated discharge is conducted by using the measured laboratory data in the unsteady condition flow showing loop state and the results are consistent. If this study is constantly carried out by using various laboratory and river data, this method will be widely utilized in water resources field.