• Title/Summary/Keyword: System Nonlinearity

Search Result 858, Processing Time 0.033 seconds

Nonlinearity Detection and Compensation in Radio over Fiber Systems Using a Monitoring Channel

  • Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.167-171
    • /
    • 2015
  • A radio over fiber (RoF) system is a kind of analog optical transmission system and considered as a strong candidate for the next-generation fronthaul link in the future mobile network. In RoF systems, nonlinearity compensation is essential to increase the link capacity. In this paper, we propose a nonlinearity detection and compensation scheme using a monitoring channel in RoF systems. A monitoring channel is added at the transmitter site and used for transmitting a reference signal in an RoF transmission. The nonlinearity in the RoF transmission is detected by comparing the received monitoring signal and the original reference signal at the receiver site. Finally, the nonlinearity is compensated at the receiver by giving the reverse function of the detected nonlinearity. Our results show that the proposed scheme can almost remove the error vector magnitude degradation induced by the nonlinearity in the RoF system.

Feasibility Study on Diagnosis of Material Damage Using Bulk Wave Mixing Technique (체적파 혼합기법을 이용한 재료 손상 진단 적용 가능성 연구)

  • Choi, Jeongseok;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • Ultrasonic nonlinear evaluation is generally utilized for detection of not only defects but also microdamage such as corrosion and plastic deformation. Nonlinearity is determined by the amplitude ratio of primary wave second harmonic wave, and the results of its comparison are used for evaluation. Owing to the experimental features, the experimental nonlinearity result contains system nonlinearity and material nonlinearity. System nonlinearity is that which is unwanted by the user; hence, it acts as an error and interrupts analysis. In this study, a bulk wave mixing technique is implemented in order to minimize the system nonlinearity and obtain the reliable analysis results. The biggest advantage of this technique is that experimental nonlinearity contains less system nonlinearity than that for the conventional nonlinear ultrasonic technique. Theoretical and experimental verifications are performed in this study. By comparing the results of the bulk wave mixing technique with those of the conventional technique, the strengths, weaknesses, and application validity of the bulk wave mixing technique are determined.

On the robust adaptive linearizing control for unknown and analytic relay nonlinearity

  • Lee, Jae-Kwan;Abe, Ken-ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.177-180
    • /
    • 1996
  • The purpose of this paper is to design a robust adaptive control algorithm for a class of systems having continuous relay nonlinearity. This continuous relay nonlinearity can be defined as an analytic nonlinear function having unknown parameters and bounded unmodeling part. By this mathematical modeling, the whole system can be considered as a nonlinear system having unknown parameters and bounded perturbation. The control algorithm of this paper, RALC, can be constructed by robust adaptive law, feedback linearization, and indirect robust adaptive control. By this RALC, we can obtain that the output of given system can follow that of a stable reference linear model made by designer and the boundedness of all signals in closed-loop system can be maintained. Therefore, we can confirm a robust adaptive control for a class of systems having continuous relay nonlinearity.

  • PDF

Power System Nonlinearity Modal Interaction by the Normal Forms of Vector Fields

  • Zhang, Jing;Wen, J.Y.;Cheng, S.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Because of the robust nonlinear characteristics appearing in today's modern power system, a strong interaction exists between the angle stability and the voltage stability, which were conventionally studied insularly. However, as the power system is a complex unified system, angle instability always happens in conjunction with voltage instability. The authors propose a novel method to analyze this type of stability problem. In the proposed method, the theory of normal forms of vector fields is utilized to treat the auxiliary dynamic system. By use of this method, the interaction between response modes caused by the nonlinearity of the power system can be analyzed. Consequently, the eigenvalue analysis method is extended to cope with performance analysis of the power system with heavy nonlinearity. The effectiveness of the proposed methodology is verified on a 3-bus power system.

Design of Digital Tracking Controller based on Disturbance Observer for Micro Electrostatic Actuator with Nonlinearity (비 선형 요소를 갖는 정전 마이크로 구동기의 외란 관측기에 기초한 디지털 추종 제어기 설계)

  • Choe, Hyun-Taek;Suh, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.773-780
    • /
    • 1999
  • A digital tracking controller is proposed for micro electrostatic actuator with input nonlinearity, where disturbance observer is utilized in cooperation with inverse function. Generally the disturbance observer is announced to be robust to modeling uncertainty, and external disturbance. But, when the nonlinearity exists in the systems, the disturbance observer may not directly be applied to that system, because the nonlinearity may destabilize the overall system. Therefore, first, we linearize the nonlinear input characteristics of micro electrostatic actuator by the use of inverse function. Secondly, we apply disturbance observer to approximately linearized system for eliminating the residuals of nonlinearity and the modeling uncertainty. Then, we get the good properties of the disturbance rejection as well as the robustness due to the own nature of disturbance observer. In this case, we propose a sufficient condition for the robust stability of overall systems. Furthermore, we discuss the problem that may be exposed when disturbance observer is applied to the internally stable system with saturation, and analyze two methods to overcome input saturation problem in the sense of internal stability. Simulations have been carried out to show the effectiveness of the proposed controller.

  • PDF

Detection of nonlinear structural behavior using time-frequency and multivariate analysis

  • Prawin, J.;Rao, A. Rama Mohan
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.711-725
    • /
    • 2018
  • Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material properties. Hence, it is highly desirable to detect and characterize the nonlinearity present in the system in order to assess the true behaviour of the structural system. Further, these identified nonlinear features can be effectively used for damage diagnosis during structural health monitoring. In this paper, we focus on the detection of the nonlinearity present in the system by confining our discussion to only a few selective time-frequency analysis and multivariate analysis based techniques. Both damage induced nonlinearity and inherent structural nonlinearity in healthy systems are considered. The strengths and weakness of various techniques for nonlinear detection are investigated through numerically simulated two different classes of nonlinear problems. These numerical results are complemented with the experimental data to demonstrate its suitability to the practical problems.

HAMILTONIAN SYSTEM WITH THE SUPERQUADRATIC NONLINEARITY AND THE LIMIT RELATIVE CATEGORY THEORY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.471-489
    • /
    • 2014
  • We investigate the number of the weak periodic solutions for the bifurcation problem of the Hamiltonian system with the superquadratic nonlinearity. We get one theorem which shows the existence of at least two weak periodic solutions for this system. We obtain this result by using variational method, critical point theory induced from the limit relative category theory.

MULTIPLE SOLUTIONS FOR THE NONLINEAR HAMILTONIAN SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.507-519
    • /
    • 2009
  • We give a theorem of the existence of the multiple solutions of the Hamiltonian system with the square growth nonlinearity. We show the existence of m solutions of the Hamiltonian system when the square growth nonlinearity satisfies some given conditions. We use critical point theory induced from the invariant function and invariant linear subspace.

  • PDF

EXISTENCE OF THE SOLUTIONS FOR THE SINGULAR POTENTIAL ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.1
    • /
    • pp.107-116
    • /
    • 2012
  • We investigate the multiple solutions for a class of the elliptic system with the singular potential nonlinearity. We obtain a theorem which shows the existence of the solution for a class of the elliptic system with singular potential nonlinearity and Dirichlet boundary condition. We obtain this result by using variational method and critical point theory.