• Title/Summary/Keyword: System Heat Pump

Search Result 1,123, Processing Time 0.027 seconds

Life-Cycle Analysis of the River Water Unutilized Energy System (LCC 분석에 의한 하천수 미활용에너지 이용시스템의 경제성 평가)

  • Park Il-Hwan;Yoon Hyung-Kee;Chang Ki-Chang;Park Jun-Taek;Park Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.596-604
    • /
    • 2005
  • This paper presents the work on evaluating the LCC (Life-Cycle Cost) of a heat pump system as unutilized energy system. The river water as an unutilized energy source was used for the heat source of heat pump system. LCC analysis is a concrete method for evaluating the economical efficiency of energy facilities of building. The present case study shows an example of adequate use of the LCC analysis on a heat pump system and conventional gas boiler and refrigerator for building heat supply. A life cycle of 20 years was used to calculated net present value of energy cost. Over a 20 year life cycle, the energy cost could be reduced by 612 million won if a heat pump system were used instead of a conventional boiler and an absorption refrigerator.

A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant (R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구)

  • 정규하;박윤철;오상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

Development of Water-Source Heat Pump System Using Riverbank Filtration Water on the Waterfront (친수지역 강변여과수 열원을 활용한 냉난방시스템 개발)

  • Cho, Yong;Kim, Dea Geun;Moon, Jong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.201.2-201.2
    • /
    • 2011
  • A water-source heat pump system has been developed for cooling and heating of a green house on the waterfront in Jinju. In order to supply a heat source/sink of water in alluvium aquifer to the heat pump system, the riverbank filtration facility (two pumping wells and one recharge well) for water intake and injection has been constructed. To pump and recharge water sufficiently, the geometric design such as depth and diameter for the wells have been completed, and details of the well such as slot size and length of the screen and filter pack size have been designed based on the practical and theoretical design method including D30 technique. For the investigation of the hydrogeological characteristics, step-drawdown test, long-term pumping test, and recovery test have been carried out for two developed pumping wells. Step-drawdown test has been performed on 4 step flowrates of 150, 300, 450, $600m^3$/day for 1 hour, and long-term pumping test on flowrate of $500m^3$/day for 24 hours, and recovery test for 6 hours. Since the underground water filtrated by riverbank is flowing smoothly into the well, the water level goes down slightly for the long-term test. Consequently, the stable pumping flowrate for two pumping well has been predicted at least over $1,647m^3$/day which is larger than the flowrate of $1,000m^3$/day for a 60 RT heat pump system.

  • PDF

Heating Effect of Greenhouse Cultivated Mangos by Heat Pump System using Underground Air as Heat Source (지하공기 이용 히트펌프시스템의 망고온실 난방효과)

  • Kang, Younkoo;Kim, Younghwa;Ryou, Youngsun;Kim, Jongkoo;Jang, Jaekyoung;Lee, Hyoungmo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.200.1-200.1
    • /
    • 2011
  • Underground air is a special energy source in Jeju and distributes lava cave, pyroclastic, open joint, and crushing zone. A possible area to utilize underground air is 85% of Jeju except to the nearby area of Sambang Mt. and 25m high coastal area from sea level. In Jeju, underground air is used for heating agricultural facilities such as greenhouse cultivated mangos, Hallbong and mandarin orange, pigsty, mushroom cultivation house, etc. and fertilizing natural $CO_2$ gas by suppling directly into agricultural facilities. But this heating method causes several problem because the underground air has over 90% relative humidity and is inadequate in heating for crops. Mangos are the most widely grown tropical fruit trees and have been cultivated since 1993 in Jeju. In Jeju, the cultivating area is about 20ha and amount of harvest is 275ton/year in 2010. In this study, the heat pump system using underground air as heat source was installed in mangos greenhouse which area is $495m^2$. The capacity of heat pump system and heat storage tank was 10RT, 5ton respectively and heating effect and heating performance of the system were analysed.

  • PDF

Performance Analysis on a Heat Pump System using Waste Heat (폐열이용 열펌프시스템의 성능에 관한 연구)

  • Park, Youn Cheol;Song, Lei;Ko, Gwang Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.53-60
    • /
    • 2018
  • This study was conducted for analysis of a heat pump system using waste heat in an enclosed space such as a green house. The model was developed with mathematical equations in literature and Engineering Equation Solver (EES) was used to get the solution of the developed equations. The simulation results have 5% of reliability comparing the results with actual test data of heat pump system's dynamic operation. The operating performance of the system was calculated with variation of working fluid temperature in the thermal storage tank such as $25^{\circ}C$, $35^{\circ}C$, $45^{\circ}C$ and $55^{\circ}C$. As a result, the system's the highest total heating capacity shows 280 kWh and the storage tank's operating time decreased as the starting storage tank's temperature was high.

Analysis on Economic Feasibility of Electric Night Storage Heat Pump as a Substitution of a Heater (심야전기보일러 대체 Heat Pump의 경제성 분석)

  • JUNG, H.;JO, J.Y.;Lee, C.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.119-124
    • /
    • 2011
  • Electric night storage heater was introduced and disseminated for power grid balancing and efficient management of power generation facility. But fuel cost for heating has been increased rapidly while the cost of electricity increased slightly. This abnormal rate system caused peak load in winter at last. To solve this problem, application of an air source heat pump was suggested. In the study, the effect of replacing night heater by heat pump and the economics were analysed. In addition the expectation of prospect of heat pump penetration was simulated based on surveyed and investigated data. As a result, fund supporting as well as institutional backing was needed for effective propagation and return of investment.

Performance of Underground Air-to-Water Heat Pump with Direct Contact Heat Exchanger (지하공기-물 직접접촉식 열교환기를 구비한 히트펌프의 성능)

  • Kim, Y.H.;Kang, Y.K.;Sung, M.S.;Ryou, Y.S.;Kim, J.G.;Jang, J.K.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.172.1-172.1
    • /
    • 2010
  • In Jeju, underground air is used for heating greenhouse and fertilizing natural $CO_2$ gas by suppling directly into greenhouse. But greenhouse heating method by direct supply of underground air has several problems as like low temperature below $20^{\circ}C$ or high relative humidity over 90%. The underground air is inadequate in heating of crops such as mangos, oranges with the growing temperature over $20^{\circ}C$. Also if the relative humidity of greenhouse is kept with over 90%, diseases can strike almost of the crops. And also the ventilation loss becomes larger because the air pressure of inside greenhouse by direct supply of underground air is higher. In this study the heat pump system using underground air as heat source was developed and heating performance of the system was analyzed. Heating COP of the system was 2.5~5.0 and rejecting heat into greenhouse and extracting heat from underground air in this heat pump system were 46.5~31.4 kW, 34.9~20.9 kW respectively.

  • PDF

Development of low-cost, low-depth unit-type ground heat exchanger (저심도 저비용 유닛형 지중열교환기의 개발)

  • Oh, Jin-Hwan;Nam, Yujin;Chae, Ho-Byung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.166-167
    • /
    • 2014
  • Recently, in according to increase cognizance of energy and resources exhaustion, renewable energy system is received attention. In particular, ground heat pump system(GSHP) utilizing annually stable ground temperature for energy saving have been attracted in many buildings. However, GSHP system have disadvantage due to increase of initial installation and boring cost. In this study, in order to reduce the initial cost and to supply ground heat pump system into small scale house, an unit-type ground heat exchanger was developed.

  • PDF

Dynamic Modeling and Simulation of a Hybrid Heat Pump (하이브리드 열펌프 동적 모델링 및 시뮬레이션)

  • Shin, Younggy;Kim, Jae Hyun;Yoo, Byeong Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.406-412
    • /
    • 2013
  • A hybrid heat pump is under development with the goal of utilizing 120% of primary energy resources. A plate heat exchanger is added between the compressor and air-cooled condenser of an ordinary heat pump to heat water. For successful operation of the heat pump, it is necessary to develop a control algorithm under various operating conditions. As a virtual test bed for that purpose, a dynamic model has been developed, to simulate its dynamic behavior. It was modeled in transient one-dimensions, with varying phase lengths considered. The model was implemented in Matlab and Simulink. Simulation results were effectively applied to design a control algorithm. They also provided physical insight into how to design and operate the system.

Study on the Fuzzy Control of CO2 Heat Pump System (이산화탄소 열펌프 시스템의 퍼지 제어에 관한 연구)

  • Lee, Jae-Seung;Han, Yung-Hee;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.513-518
    • /
    • 2008
  • In the air-conditioning and refrigeration industry, the efforts to protect the environment have been made. One of them is to use carbon dioxide as an alternative refrigerant, however, several researches have shown that the transcritical heat pump system using $CO_2$ has relatively lower efficiency resulting in a degraded steady-state system performance. Capacity control with fuzzy controller was carried out for $CO_2$ heat pump system. Evaporator secondary fluid outlet temperature was suggested for the control variable of compressor speed modulation.

  • PDF