• 제목/요약/키워드: System Heat Pump

검색결과 1,123건 처리시간 0.032초

열환경 챔버 제어를 위한 PID 튜닝기법 연구 (A Study on PID Tuning Technique of a Thermal Environment Chamber)

  • 신영기;양훈철;태춘섭;장철용;조수;김영일
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.1072-1078
    • /
    • 2005
  • The present study has been conducted to tune a PID controller for large thermal systems such as a thermal environment chamber. In spite of large thermal mass of the thermal chamber under test, its response delay time was found to be negligible mainly due to high air recirculation rate. In general, heating and cooling capacities tend to be small compared the size of a thermal environment chamber, which leads to long transient periods of one hour or so. In the study, a PI tuning method is suggested which makes system responses faster while reducing overshoots and hunting by utilizing efficiently proportional band of actuators.

지역난방의 일반제어 및 열량제어 에너지 시뮬레이션 (Energy Simulation for Conventional and Thermal-Load Controls in District Heating)

  • 이성욱;홍희기;조성환
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.50-56
    • /
    • 2015
  • Korea district heating systems have mainly used setting temperature control and outdoor reset control. Different from such conventional normal methods, a thermal-load control proposed in Sweden can decrease the return temperature and reduce pump power consumptions because the control is able to provide the appropriate amount of required heat. In this study, further improved predictive optimal control in addition to the conventional controls were simulated in order to verify its effect in district heating system using TRNSYS 17. $200m^2$ apartment housing which accounts for 25% in Korea and is used as a calculation model;. the number of households in the simulation was 9. As a result, a higher temperature difference and decreasing flow rate at primary loop were shown when using thermal-load control.

CO2 냉매용 전자팽창밸브의 해석 및 평가 (Analysis and Performance Test of an Electronic Expansion Valve for CO2)

  • 김욱중;윤석호;홍용주;김정엽;강신일
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1491-1496
    • /
    • 2009
  • Fluid flow and structural analyses of an electronic expansion valve (EEV) using CO2 as a working refrigerant are carried out to estimate the mass flow rate and maximum stress. An engineering sample EEV that the orifice diameter is 1.8 mm was fabricated. The mass flow rates were measured at various EEV inlet temperatures and pressures for several EEV openings using experimental heat pump system. The sample EEV has over 35 MPa burst pressure and the maximum mass flow rate of CO2 through the EEV increased to 100 g/s at full opening condition.

  • PDF

마그네슘 합금제 휠 제조에 관한 연구 (A Study of Manufacturing AZ91D Mg Alley Wheel)

  • 김정구;신일성;금동화
    • 한국재료학회지
    • /
    • 제9권7호
    • /
    • pp.715-723
    • /
    • 1999
  • 마그네슘은 20여년간 자동차 산업에서 휠소재로 사용되어 왔다. 마그네슘 휠은 무게가 알루미늄 휠보다 25% 가벼워서 주행성이 우수하다. 이 연구의 목적은 사형주조 및 영구금형주조 공정에 의한 AZ91D 합금제 췰을 개발하는 것이다 보호개스$(SF_6+CO_2)$를 사용하는 비플럭스 용해기술을 적용하여 용탕의 산화와 불순물의 유입을 배제하였다 마그네슘 용탕은 가압식 펌프시스템을 사용하여 가열된 파이프를 통하여 모울드에 자동으로 공급된다. 열처리 및 인고트의 조성에 따른 AZ91B 합금제 휠의 기계적 특성을 조사하였다.

  • PDF

GHP 운전시 COV에 의한 정상상태 판별 및 이상검출 방법 연구 (A Study on Steady-State Criterion based on COV and a Fault Detection Method during GHP Operation)

  • 신영기;오세재;정진희
    • 설비공학논문집
    • /
    • 제23권11호
    • /
    • pp.705-710
    • /
    • 2011
  • Fault detection has to be proceeded by steady state filtering to get rid of transient effect associated with thermal capacity. Coefficient of variance (COV), ratio of standard deviation devided by moving average, was employed as steady-state filter. Engine speed and refrigerant pressures were selected as parameters representing system dynamics. The filtered values were registered as members of steady-state DB. They were found to show good functional relationship with ambient temperature. The relationship was fitted with a second order polynomial and the distribution bounds of the data around the fitted curve were expressed by visual inspection because of varying average and random data interval. Fault data were compared with the steady-state data obtained during normal operation. The fault data were easily isolated from the fault-free one. To make such isolation reliable, tests to construct good DB should be designed in a systematic way.

LCC를 이용한 공조 방식별 비교 연구 (Comparison Study of Air-conditioning Systems using LCC Analysis)

  • 김종국;정광섭;김영일
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권3호
    • /
    • pp.12-18
    • /
    • 2012
  • The purpose of this study is to make an economic analysis(Life cycle cost) of selecting optimal air conditioning system for a research building which is 8 stories with a total floor area of $32,010m^2$. Energy consumptions of three proposed air-conditioning systems(Alt-1,2,3) that reflect the government green-growth policy are calculated and compared. The results show that life cycle cost of Alt-3(Ventilation DX AHU+EHP) is less than Alt-1(EHP+ventilation DX AHU) by 5.1%, and Alt-2(Absorption chiller/heater+EHP) by 34.3%. Annual energy consumption of Alt-3 is less than Alt-1 by 9.9%, and Alt-2 by 37.4%. Annual $CO_2$ emission of Alt-3 is less than Alt-1 by 9.9%, and Alt-2 by 0.2%.

복합열원설비 운전온도 최적 설정에 관한 해석적 연구 (An Analytical Study on the Optimal Set-point of the Hybrid Plant)

  • 전종욱;이선일;이태원;김용기;홍대희;김용찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.352-357
    • /
    • 2007
  • The objective of this study is to find the optimal set-point of a hybrid Plant, which is combined by renewable energy plant of the GSHP(Ground Source Heat Pump) and the conventional plant(chiller, boiler). The work presented in this study was carried out by using the EnergyPlus(Version 2.0). In order to validate the simulation model, field data were measured from a building. The GSHP was used as a base plant and the conventional plant as the assistant plant. Various temperatures were controlled (zone summer set-point, zone winter set-point, chilled water temperature, hot water temperature) to find the optimal set-point temperature of the system. The influence of the various set-points were analyzed seasonally.

  • PDF

프로세스 압축기 틸팅패드 저널베어링의 비정상 고온거동 트러블슈팅 (Abnormal High-Temperature Behavior Troubleshooting of Process Compressor Tilting Pad Journal Bearing)

  • 이안성;이운실;최동훈
    • Tribology and Lubricants
    • /
    • 제33권2호
    • /
    • pp.37-44
    • /
    • 2017
  • A DE-side LBP tilting pad journal bearing of a 1-stage overhung heat-pump compressor in a propylene process exhibited abnormal high-temperature behavior. Its temperature had been relatively high at $78^{\circ}C$ from the beginning of operation. In 2014, after three years of operation, it increased suddenly and reached $103^{\circ}C$. Installing a varnish removal equipment and others managed to stabilize the temperature at $95^{\circ}C$. We undertook a troubleshooting approach for reviewing the comprehensive status and integrity of the temperature design of the bearing. We performed lubrication and heat-balance analysis, based on the design engineering data and documents supplied by the OEM. For the base design data of DE-side TPJB, evaluating the effects of key design variables on bearing metal temperature showed that firstly, increasing the bearing clearance and supply oil flow-rate, and next, changing the oil type, and finally, increasing the machined pad clearance and offset, are more effective in reducing the bearing metal temperature. Furthermore, a clarification meeting with the OEM revealed that an incorrect decision had been made to decrease the bearing clearance to eliminate the SSV harshness issue, while not maintaining a sufficient oil flow-rate. We conducted a detailed retrofit design analysis, wherein we increased the oil flow-rate and bearing clearance by decreasing the preload. We predicted that the bearing temperature would decrease to $63^{\circ}C$ from $75.7^{\circ}C$ even at the rerate condition. Finally, after installing and operating a retrofit replacement bearing in 2015, the bearing temperature stabilized at a low temperature of $65^{\circ}C$. Currently (January. 2017), two year later, the bearing metal temperature remains at $65^{\circ}C$. Therefore, we can conclude that the abnormal high-temperature behavior of the bearing has been resolved completely.

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.