• Title/Summary/Keyword: System Engineering (ISO/IEC 15288)

Search Result 24, Processing Time 0.025 seconds

A Study on The Mass Production Weapon System Parts Localization System Engineering Development Management Process Application based on ISO/IEC/IEEE 15288 (ISO/IEC/IEEE 15288 기반 양산단계 무기체계 부품국산화 체계공학 개발관리 절차 적용 연구)

  • Kim, Jang-Eun;Shim, Bo-Hyun;Cho, Yu-Seup;Sung, In-Chul;Han, Dong-Seog
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.3
    • /
    • pp.541-552
    • /
    • 2016
  • Purpose: In this study, we propose that how to approach a effective system engineering and optimize system engineering management process for the mass production weapon system parts localization development process and success in DTaQ. Methods: To approach a effective system engineering for the mass production weapon system parts localization, we analyze a weapon system acquisition process and system engineering process of Republic of Korea and DTaQ parts localization business regulations in advance. after results of analysis of them, we implement a optimized parts localization development system engineering based on ISO/IEC/IEEE 15288. Results: In order to apply International Standard ISO/IEC/IEEE 15288 to the mass production weapon system parts localization development process, we compare the mass production weapon system parts localization acquisition environment with ISO/IEC/IEEE 15288 and analyze them. therefore, It is possible to implement a part of concept stage and development stage of ISO/IEC/IEEE total life cycle stage for the mass production weapon system parts localization development process. To achieve the technical review milestones of DTaQ parts localization business regulations in the selected stages of ISO/IEC/IEEE, the development and management agency perform 2 high rank process and 19 low rank process specified in ISO/IEC/IEEE. Conclusion: When the development and management agency perform the mass production weapon system parts localization development using the proposed system engineering approach, they should easily meet milestone through the clarified requirement and simplified System Engineering output documents in limited development period.

A study on Verification Process for LRT's Power Supply System Based on the ISO/IEC 15288 (국제표준 ISO/IEC 15288 기반의 경량전철 전력시스템 검증 프로세스에 관한 연구)

  • Choi, Won Chan;Bae, Joon Ho;Heo, Jae Hun;Lee, Sang Geun;Han, Seok Youn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 2013
  • The object of this study is to define systematically for outputs of Verification Process among the system life cycle process based on ISO/IEC 15288 for power supply system, which is one of the importance sub-systems to configure the LRT system. Furthermore, to prevent various problem in advance that can occur in the Transition LRT's power supply to be completed Integration. For this purpose, traceability of verification requirement and outputs. should be managed to use verification for system requirement and data processing tool. by system engineering techniques of system life cycle process based on ISO/IEC 15288 to LRT system.

The study of development for military device adopts diverse process (다양한 프로세스를 적용한 군장비 개발에 관한 연구)

  • Lee, Sang-Myung;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2473-2478
    • /
    • 2013
  • The recently developed military system adopts System Engineering for quality insurance. The process of military system's development basically adopts specification(MIL-STD-499) and system engineering(ISO/IEC 15288) that was developed by America. Recently the level of company's capability maturity is granted by measurement and assessment for the level of CMM or CMMI that was developed by Carnegie Mellon University. This article introduces adopted range of process that developed military system adopted additional process of CMMI. This article writes a merit of process for military system's output that is developing device adopted diverse process.

The development of Military Device adopt diverse System Engineering (다양한 시스템공학을 적용한 군장비 개발)

  • Lee, Sang-myung;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.210-213
    • /
    • 2012
  • The recently developed military system adopts System Engineering for quality insurance. The process of military system's development basically adopts specification(MIL-STD-499) and system engineering(ISO/IEC 15288) that was developed by America. Recently the level of company's capability maturity is granted by measurement and assessment for the level of CMM or CMMI that was developed by Carnegie Mellon University. This article introduces adopted range of process that developed military system adopted additional process of CMM. This article writes range of process for military system that is developing device adopted diverse process in the future.

  • PDF

Management Process Study to RAMS Application of Light Rail Transit System (경량전철 시스템의 RAMS 적용을 위한 관리 프로세스 연구)

  • Cha, Gi-Ho;Park, Jin-Jae;Lee, Jae-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.226-238
    • /
    • 2011
  • RAMS (Reliability, Availability, Maintainability, Safety) study has received far less rigorous analysis in the system performance and integration level, and RCM (Reliability Centered Maintenance) research has been studying to improve the maintenance efficiency in the operational steps based on collected data of real operational cases. This paper analyzes the basic concepts based on KS X ISO/IEC 15288 system life-cycle process in the whole system for the light rail transit construction, and the research suggests an approach to the management process of the applicable main tasks. The paper "Management Process Study to RAMS Application of Light Rail Transit System" introduces Airport Rail cases and guidelines by using RAMS which is the major role in the system engineering technical process of ISO/IEC 15288 (International Organization for Standardization/International Electrotechnical Commission 15288) to apply RAMS in domestic light rail transit efficiently, the aim of this study is to broaden of understanding RAMS.

  • PDF

A Development Plan for Core System of Urban Transit based on System Engineering Process (시스템엔지니어링 수명주기를 고려한 도시철도 핵심장치 개발 전략)

  • Han, Seok-Youn;Kim, Jin-Ho;An, Tae-Ki;Lee, Woo-Dong;Shin, Won-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.2005-2013
    • /
    • 2008
  • Urban transit is a large scaled complex system which combines rolling stocks, power supply, signal communications, tracks & stations etc. KRRI develops nine key devices since July, 2007 as a part of the second phase of project on the standardization of urban rail transit system, which include information-communication system, station facilities, AC-DC current electric power system in urban transit. We promote the project under two directions, i.e. user-customer oriented standardization and strategic standardization for leading technologies in urban transit. In this paper, we present development plan of these key systems in view of system life cycle based on system engineering standards KSX ISO/IEC 15288 which supplies the common fundamental frame to describe the life cycle of artificial systems. System engineering process of KSX ISO/IEC 15288 are helpful to efficiently develop those key devices, although it is difficult to apply the standard identically to the key devices with the varieties and characteristics.

  • PDF

Intermediate Storage Process required before Operation Site Installation of System (Focusing on the Rolling Stock of Railway System) (시스템의 운용 현장 설치 전 요구되는 중간 보관 프로세스 연구 (철도차량 중심으로))

  • Choi, Yo Chul
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.141-147
    • /
    • 2020
  • Due to the nature of the long-term project of a Railway business, Many problems have been arisen in the process of delivering products or systems verified by suppliers to the customer's operation site. Unexpectedly, it is often necessary for the verified products to store intermediately at the supplier's site for a variety of reasons, such as delays in business and delays in civil engineering, at the time of sending them to the customer's operation site. In this study, the intermediate storage process for finding and solving problems related to intermediate storage was presented focusing on the Rolling Stock of Railway System by reference to ISO/IEC/IEEE 15288:2015. A suitable intermediate storage process based on the developed product or system's characteristics will allow the verified products or systems to be placed on the customer's operation site and to meet the customer's product or system requirements.

A Study on Graphical Modeling Methods for Systems Engineering Standard Processes (시스템공학 표준 프로세스에 대한 그래픽 모델화 연구)

  • Lim, Yong-Taek;Lee, Byoung-Gil;Lee, Jae-Chon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.27-32
    • /
    • 2006
  • The emerging standards since 1990's can be classified as 'system standards' (process-oriented standards) and they specify the process of an enterprise and also apply to almost all industries regardless of size, type and products. Notice that the conventional specification-oriented standards present relatively clear criteria even though the structure, performance, and terminology are defined in text-based form. However, the system standards dealing with the processes do not present a coherent guide. Therefore, it is difficult to analyze them with the same viewpoint, thereby resulting in differences in the level of understanding. This study is aimed at graphically modeling the system standards originally described in text-based form. The study has been carried out in the framework of the PMTE (Process, Methods, Tools, and Environment) paradigm. The system standard targeted here is ISO/IEC 15288. Firstly, review of the literature on the systems engineering (SE) standard/process and on the graphic model IDEF0 was done, respectively, for the parts of 'E' and 'M'. Then the SE process of the MIL-STD 499B was applied to ISO/IEC 15288 as 'P'. Finally, the graphical model was generated by AI0Wins as 'T'. As a result, the graphical model-based approach can complement the drawbacks of the text-based form.

  • PDF

A Study on the RAM Application of a Light Rail Transit Business, Ac-cording to the Technique Application in System Engineering (시스템엔지니어링 기법 적용에 따른 경량전철사업의 RAM적용에 관한 고찰)

  • Lee, Seong-Gwon;Min, Kyong-Se;Jeon, Seo-Tak;Jung, Kye-Young
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • A LRT(Light Rail Transit) is one of the Future Urban Railway Development Project. The project's goal is to reduce a transportation congestion in the center of the city. New transportation is intensely required in order to overcome a limit of the ground transportation that is the existing public transportation, A LRT(Light Rail Transit) construction project to be based on an unmanned driving system is the large composition system that a vehicle, a signal, communication, electric, track etc. were organically integrated as echo-friendly urban transportation systems. It also put a huge budget, which is a large-scale infrastructure projects. It is international trend that Light Rail Transit projects apply a technique in System Engineering for a schedule, cost, quality elevations, and to approach in viewpoints of life-cycle from initial construction steps to operation, abolition. This paper intends to analyze RAM requirements taking into consideration ISO/IEC 15288 throughout life-cycle from concept, design, manufacture, operation and maintenance to the final phase, decommissioning, and the study seeks to suggest directions of efficient use to domestic LRT projects.

A study on the Life Cycle Cost reduction of the LRT's power systems based on the advanced Systems Engineering (시스템엔지니어링 기법 적용에 따른 경량전철 전기시스템의 생명주기비용 절감에 관한 연구)

  • Choi, Won-Chan;Bae, Joon-Ho;Heo, Jae-Hun;Joo, Ji-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1434-1439
    • /
    • 2011
  • The purpose of this study is based on the optimize the system life cycle cost apply to the advanced systems engineering techniques consideration thought to the system life cycle for the power system which is the one of the major component of the light rail transit system. Generally, the systems engineering techniques apply to the LRT's power systems are not optimize the whole life cycle cost of the power systems because systems engineering management activities are concentrate in performing the key-technology oriented at the construction stage of the dedicated power systems for light rail transit. Through this study, All the stakeholders can be utilize a this advanced systems engineering techniques which is fully considered the life cycle cost through the considering in whole system life cycle (such as concept, design, operation, maintenance and dispose stage as well as construction stage) and adopted by KSX ISO/IEC 15288 system life cycle processes.

  • PDF