• 제목/요약/키워드: System Controller

검색결과 11,088건 처리시간 0.035초

Development of FPGA-based Programmable Timing Controller

  • Cho, Soung-Moon;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1016-1021
    • /
    • 2003
  • The overall size of electronic product is becoming small according to development of technology. Accordingly it is difficult to inspect these small components by human eyes. So, an automation system for inspecting them has been used. The existing system put microprocessor or Programmable Logic Controller (PLC) use. The structure of microprocessor-based controller and PLC use basically composed of memory devices such as ROM, RAM and I/O ports. Accordingly, the system is not only becomes complicated and enlarged but also higher price. In this paper, we implement FPGA-based One-chip Programmable Timing Controller for Inspecting Small components to resolve above problems and design the high performance controller by using VHDL. With fast development, the FPGA of high capacity that can have memory and PLL have been introduced. By using the high-capacity FPGA, the peripherals of the existent controller, such as memory, I/O ports can be implemented in one FPGA. By doing this, because the complicated system can be simplified, the noise and power dissipation problems can be minimized and it can have the advantage in price. Since the proposed controller is organized to have internal register, counter, and software routines for generating timing signals, users do not have to problem the details about timing signals and need to only send some values about an inspection system through an RS232C port. By selecting theses values appropriate for a given inspection system, desired timing signals can be generated.

  • PDF

클라우드 기반의 AP Controller를 이용한 무선 네트워크 통합 관리 시스템 (Integrated Wireless Network Control System using a Cloud-based AP Controller)

  • 민경수;윤권진;박민호;정수환
    • 한국통신학회논문지
    • /
    • 제40권4호
    • /
    • pp.720-722
    • /
    • 2015
  • 본 논문에서는 클라우드[1] 기반의 AP Controller를 이용한 새로운 형태의 무선 네트워크 통합 관리 시스템을 제안한다. 이 시스템을 이용하여 망 관리자는 지역적으로 분리된 기업, 기관들의 무선 네트워크를 계층적으로 통합 관리할 수 있다. 기업, 기관들의 본사, 중앙에 AP Controller Manager를 두어 지역별로 나뉘어져 있는 AP, AC들을 계층적으로 통합 관리할 수 있고, 자동으로 AC를 생성하여 운영할 수 있는 기능을 제공한다. 본 논문에서는 제안한 무선 네트워크 통합 관리 시스템의 아키텍처와 구성 요소 및 동작 프로토콜을 설명한다.

The Performance Improvement of Synchronous Machine with Digital Excitation System Control

  • Hong, H.M.;Choi, J.H.;Jeon, B.S.;Min, M.K.;Kim, J.G.;Lim, I.H.;Ryu, H.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.498-501
    • /
    • 2005
  • This paper deals with the design and evaluation of the robust controller for a synchronous generator excitation system to improve the steady state and transient stability. The nonlinear characteristics of the system is treated as model uncertainties, and then the robust control techniques are introduced into the power system stability design to take into account these uncertainties at the controller design stage. The performance of the designed controller is examined by extensive non-linear time domain simulation. It is shown that the performance of the robust controller is superior to that of the conventional PI controller. This paper also proposes an improved digital exciter control system for a synchronized generator using a digitally designed controller with database. Results show that the proposed control system manifests excellent control performance compared to existing control systems. It has also been confirmed that it is easy for the proposed control system to implement digital control.

  • PDF

The Performance Improvement of Excitation System using Robust Control with DATABASE

  • Hong, Hyun-Mun;Jeon, Byeong-Seok;Kim, Jong-Gun;Lee, Sang-Hyuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.83-87
    • /
    • 2005
  • This paper deals with the design and evaluation of the robust controller for a synchronous generator excitation system to improve the steady state and transient stability. The nonlinear characteristics of the system is treated as model uncertainties, and then the robust control techniques are introduced into the power system stability design to take into account these uncertainties at the controller design stage. The performance of the designed controller is examined by extensive non-linear time domain simulation. It is shown that the performance of the robust controller is superior to that of the conventional PI controller. This paper also proposes an improved digital exciter control system for a synchronized generator using a digitally designed controller with database. Results show that the proposed control system manifests excellent control performance compared to existing control systems. It has also been confirmed that it is easy for the proposed control system to implement digital control.

PI Controller Design of the Refrigeration System Based on Dynamic Characteristic of the Second Order Model

  • Jung, Young-Mi;Jeong, Seok-Kwon;Yang, Joo-Ho
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.200-206
    • /
    • 2014
  • This paper deals with deterministic PI controller design based on dynamic characteristics for refrigeration system. The temperature control system of an oil cooler is described as a typical 2nd order model of the refrigeration system which has zeros in a transfer function. PI controller gains satisfying control specifications are represented by the dynamic characteristic functions using relationship between the parameters and the control specifications in the model. Phase margin was considered to increase robustness of the oil cooler control system. Furthermore, the influence of zeros in the model to the control specifications was analyzed in detail for improving control performance. The validity of the suggested PI controller design was investigated using the four types of gains which had been already confirmed their control performances through experiments.

AGV의 분산제어를 위한 에이전트 기반의 제어시스템 (Agent-based control systemfordistributed control of AGVs)

  • 오승진;정무영
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.1117-1123
    • /
    • 2005
  • This paper deals with a new automated guided vehicle (AGV) control system for distributed control. Proposed AGV control system adapts the multi-agent technology. The system is composed of two types of controller: routing and order. The order controller is in charge of assignment of orders to AGVs. Through the bidding-based negotiation with routing controllers, the order controller assigns a new order to the proper AGV. The order controller announces order information to the routing controllers. Then the routing controllers generate a routing schedule for the order and make a bid according to the routing schedule. If the routing schedule conflicts with other AGV's one, the routing controller makes an alternative through negotiation with other routing controllers. The order controller finally evaluates bids and selects one. Each controller consists of a set of agents: negotiation agent, decision making agent and communication agent. We focus on the agent architecture and negotiation-based AGV scheduling algorithm. Proposed system is validated through an exemplary scenario.

  • PDF

HVDC 시스템에 대한 유전자 알고리즘을 사용한 새로운 퍼지 제어기의 설계 (A New Design of Fuzzy controller for HVDC system with the aid of GAs)

  • 왕중선;양정제;노석범;안태천
    • 제어로봇시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.221-226
    • /
    • 2006
  • In this paper, we study an approach to design a Fuzzy PI controller in HVDC(High Voltage Direct Current) system. In the rectifier of traditional HVDC system, turning on, turning off, triggering and protections of thyristors have lots of problems that can make the dynamic instability and cannot damp the dynamic disturbance efficiently. In order to solve the above problems, we adapt Fuzzy PI controller for the fire angle control of rectifier. The performance of the Fuzzy PI controller is sensitive to the variety of scaling factors. The design procedure dwells on the use of evolutionary computing(Genetic Algorithms, GAs). Then we can obtain factors of the Fuzzy PI controller by Genetic Algorithms. A comparative study has been performed between Fuzzy PI controller and traditional PI controller, to prove the superiority of the proposed scheme.

Battery Energy Storage System Based Controller for a Wind Turbine Driven Isolated Asynchronous Generator

  • Singh, Bhim;Kasal, Gaurav Kumar
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents an investigation of a voltage and frequency controller for an isolated asynchronous generator (IAG) driven. by a wind turbine and supplying 3-phase 4-wire loads to the isolated areas where a grid is not accessible. The control strategy is based on the indirect current control of the VSC (voltage source converter) using the frequency PI controller. The proposed controller consists of three single-phase IGBT (Insulated Gate Bipolar Junction Transistor) based VSC, which are connected to each phase of the IAG through three single phase transformers and a battery at their DC link. The controller has the capability of controlling reactive and active powers to regulate the magnitude and frequency of the generated voltage, harmonic elimination, load balancing and neutral current compensation. The proposed isolated system is modeled and simulated in MATLAB using Simulink and PSB (Power System Block-set) toolboxes to verify the performance of the controller.

외란관측기를 이용한 자기부상시스템의 제어기 설계에 관한 연구 (A Study on the Controller Design for EMS System using Disturbance Observer)

  • 강남숙;조남훈
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1264-1269
    • /
    • 2013
  • In this paper, we study a disturbance observer (DOB) based controller for an EMS(Electro-Magnetic Suspension) system in presence of mass uncertainty and input disturbance. The DOB based controller is employed in order to compensate the modeling uncertainty and attenuate disturbance signals. For the design of DOB based controller, the Jacobain linearization of nonlinear system model equation is used. Computer simulation is carried out for nonlinear model in order to compare the performance of the proposed DOB controller with that of the conventional PID controller. The simulation results show that the substantial improvement in the performance can be achieved by the proposed DOB controller.

Rough Fuzzy Control of SVC for Power System Stability Enhancement

  • Mishra, Yateendra;Mishra, Sukumar;Dong, Zhao Yang
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.337-345
    • /
    • 2008
  • This paper presents a new approach to the design of a rough fuzzy controller for the control loop of the SVC (static VAR system) in a two area power system for stability enhancement with particular emphasis on providing effective damping for oscillatory instabilities. The performances of the rough fuzzy and the conventional fuzzy controller are compared with that of the conventional PI controller for a variety of transient disturbances, highlighting the effectiveness of the rough fuzzy controller in damping the inter-area oscillations. The effect of the rough fuzzy controller in improving the CCT (critical clearing time) of the two area system is elaborated in this paper as well.