• 제목/요약/키워드: System Codes

Search Result 1,764, Processing Time 0.028 seconds

Profile Guided Selection of ARM and Thumb Instructions at Function Level (함수 수준에서 프로파일 정보를 이용한 ARM과 Thumb 명령어의 선택)

  • Soh Changho;Han Taisook
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.227-235
    • /
    • 2005
  • In the embedded system domain, both memory requirement and energy consumption are great concerns. To save memory and energy, the 32 bit ARM processor supports the 16 bit Thumb instruction set. For a given program, the Thumb code is typically smaller than the ARM code. However, the limitations of the Thumb instruction set can often lead to generation of poorer quality code. To generate codes with smaller size but a little slower execution speed, Krishnaswarmy suggests a profiling guided selection algorithm at module level for generating mixed ARM and Thumb codes for application programs. The resulting codes of the algorithm give significant code size reductions with a little loss in performance. When the instruction set is selected at module level, some functions, which should be compiled in Thumb mode to reduce code size, are compiled to ARM code. It means we have additional code size reduction chance. In this paper, we propose a profile guided selection algorithm at function level for generating mixed ARM and Thumb codes for application programs so that the resulting codes give additional code size reductions without loss in performance compared to the module level algorithm. We can reduce 2.7% code size additionally with no performance penalty

A Hybrid Multiuser Detection Algorithm for Outer Space DS-UWB Ad-hoc Network with Strong Narrowband Interference

  • Yin, Zhendong;Kuang, Yunsheng;Sun, Hongjian;Wu, Zhilu;Tang, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1316-1332
    • /
    • 2012
  • Formation flying is an important technology that enables high cost-effective organization of outer space aircrafts. The ad-hoc wireless network based on direct-sequence ultra-wideband (DS-UWB) techniques is seen as an effective means of establishing wireless communication links between aircrafts. In this paper, based on the theory of matched filter and error bits correction, a hybrid detection algorithm is proposed for realizing multiuser detection (MUD) when the DS-UWB technique is used in the ad-hoc wireless network. The matched filter is used to generate a candidate code set which may contain several error bits. The error bits are then recognized and corrected by an novel error-bit corrector, which consists of two steps: code mapping and clustering. In the former step, based on the modified optimum MUD decision function, a novel mapping function is presented that maps the output candidate codes into a feature space for differentiating the right and wrong codes. In the latter step, the codes are clustered into the right and wrong sets by using the K-means clustering approach. Additionally, in order to prevent some right codes being wrongly classified, a sign judgment method is proposed that reduces the bit error rate (BER) of the system. Compared with the traditional detection approaches, e.g., matched filter, minimum mean square error (MMSE) and decorrelation receiver (DEC), the proposed algorithm can considerably improve the BER performance of the system because of its high probability of recognizing wrong codes. Simulation results show that the proposed algorithm can almost achieve the BER performance of the optimum MUD (OMD). Furthermore, compared with OMD, the proposed algorithm has lower computational complexity, and its BER performance is less sensitive to the number of users.

Development of a Real-Time Control System for Rapid Prototyping (Rapid Prototyping을 위한 실시간 제어시스템 개발에 관한 연구)

  • Kang, Moon-Ho;Jeong, Kyung-Min;Park, Yoon-Chang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.927-929
    • /
    • 1999
  • In this research a real-time control system was developed without program codings during control system designing procedures. On the Simulink window control system is designed in the form of block diagrams, program codes are produced automatically with the real time workshop package, then C-compiler compiles the program codes. With this automatic real-time program producing mechanism rapid prototyping is realized. To show effectiveness of the proposed system designing scheme a DSP-based DC motor speed control system was constructed and PI and Fuzzy control methods were implemented.

  • PDF

STATE OF THE ART IN USING BEST ESTIMATE CALCULATION TOOLS IN NUCLEAR TECHNOLOGY

  • D'AURIA FRANCESCO;ANIS BOUSBIA-SALAH;PETRUZZI ALESSANDRO;NEVO ALESSANDRO DEL
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.11-32
    • /
    • 2006
  • System thermal-hydraulic codes have been used in the past decades in the areas of design, operation, licensing and safety of Nuclear Power Plants (NPPs). The development and validation of these codes have reached a high degree of maturity, through the consideration of huge experiments and advanced numerical models. Nowadays, the analyses are based upon realistic approaches rather than the conservative evaluation models. However the applications of these computational tools require preliminary qualification issues. Although huge amounts of financial and human resources have been invested for the development and improvement of codes, the calculation results are still affected by errors. In the sophisticated nuclear technology, design and safety of NPP, these errors must be quantified. An overview of the state of the art of the current thermal-hydraulic system code is developed and the need of uncertainty analysis in code calculations is emphasized. Several sources of uncertainty have been classified and commented, and typical applications of such methods are shown.

A Multi-Dimensional Thermal-Hydraulic System Analysis Code, MARS 1.3.1

  • Jeong, Jae-Jun;Ha, Kwi-Seok;Chung, Bub-Dong;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.344-363
    • /
    • 1999
  • A multi-dimensional thermal-hydraulic system analysis code, MARS 1.3.1, has been developed in order to have the realistic analysis capability of two-phase thermal-hydraulic transients for pressurized water reactor (PWR) plants. As the backbones for the MARS code, the RELAP5/MOD3.2.1.2 and COBRA-TF codes were adopted in order to take advantages of the very general, versatile features of RELAP5 and the realistic three-dimensional hydrodynamic module of COBRA-TF. In the MARS code, all the functional modules of the two codes were unified into a single code first. Then, the source codes were converted into the standard Fortran 90, and then they were restructured using a modular data structure based on "derived type variables" and a new "dynamic memory allocation" scheme. In addition, the Windows features were implemented to improve user friendliness. This paper presents the developmental work of the MARS version 1.3.1 including the hydrodynamic model unification, the heat structure coupling, the code restructuring and modernization, and their verifications.their verifications.

  • PDF

Hybrid-ARQ protocols based on first-order reed-muller codes with soft decision detectors (연판정 검출기를 사용한 1차 reed-muller 부호에 근거한 복합 자동반복요구 프로토콜)

  • 황원택;김동인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1256-1265
    • /
    • 1996
  • Soft-decision detectors are used in many FEC and ARQ schemes to enhance the bit-error-probability and system throughput. Also, the hybrid-ARQ protocol is a very efficient schemeto achieve overall performance improvement. In this paper, we propose a new hybrid-ARQ protocol based on the first-order Reed-Muller codes employing soft-decision detectors. The Reed-Muller codes have the virtue of being able to use the fast Green machine decoder that is simple to implement. As the performance measures, the bit-error-probability and system throughput are evaluted for the proposed hybrid-ARQ procol, and compared with those of other hybrid-ARQ schemes. It is shown that the use of the proposed hybrid-ARQ protocol results in significant performance improvement without causing much loss in view of system complexity.

  • PDF

New Error Control Algorithms for Residue Number System Codes

  • Xiao, Hanshen;Garg, Hari Krishna;Hu, Jianhao;Xiao, Guoqiang
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.326-336
    • /
    • 2016
  • We propose and describe new error control algorithms for redundant residue number systems (RRNSs) and residue number system product codes. These algorithms employ search techniques for obtaining error values from within a set of values (that contains all possible error values). For a given RRNS, the error control algorithms have a computational complexity of $t{\cdot}O(log_2\;n+log_2\;{\bar{m}})$ comparison operations, where t denotes the error correcting capability, n denotes the number of moduli, and ${\bar{m}}$ denotes the geometric average of moduli. These algorithms avoid most modular operations. We describe a refinement to the proposed algorithms that further avoids the modular operation required in their respective first steps, with an increase of ${\lceil}log_2\;n{\rceil}$ to their computational complexity. The new algorithms provide significant computational advantages over existing methods.

Performance analysis on wireless sensor network using LDPC codes over node-to-node interference (노드 간 간섭 시 LDPC부호를 이용한 무선 센서 네트워크의 성능 분석)

  • Choi Sang-Min;Moon Byung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.19-24
    • /
    • 2006
  • Wireless sensor networks(WSN) technology has various applications such as surveillance and information gathering in the uncontrollable area of human. One of major issues in WSN is the research for reducing the energy consumption and reliability of data. A system with forward error correction(FEC) can provide an objective reliability while using less transmission power than a system without FEC. In this paper, we propose to use LDPC codes of various code rate(0.53, 0.81, 0.91) for FEC for WSN. Also, we considered node-to-node interference in addition to AWGN channel. The proposed system has not only high reliable data transmission at low SNR, but also reduced transmission power usage.

Designing a Vibrotactile Reading System for Mobile Phones

  • Chu, Shaowei;Zhu, Keying
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1102-1113
    • /
    • 2018
  • Vibrotactile feedback is widely used in designing non-visual interactions on mobile phones, such as message notification, non-visual reading, and blind use. In this work, novel vibrotactile codes are presented to implement a non-visual text reading system for mobile phones. The 26 letters of the English alphabet are formed in an index table with four rows and seven columns, and each letter is mapped using the codes of vibrations. Two kinds of vibrotactile codes are designed with the actuator's on and off states and with specific lengths (short and long) assigned to each state. To improve the efficiency of tactile perception and user satisfaction, three user experiments are conducted. The first experiment explores the maximum number of continuous vibrations and minimum vibration time of the actuator's on and off states that the human can perceive. The second experiment determines the minimum interval between continuous vibrations. The vibrotactile reading system is designed and evaluated in the third experiment according to the results of the two preceding experiments. Results show that the character reading accuracy reaches 91.7% and the character reading speed is approximately 617.8 ms. Our method has better reading efficiency and is easier to learn than the traditional Braille coding method.

Modelling of multidimensional effects in thermal-hydraulic system codes under asymmetric flow conditions - Simulation of ROCOM tests 1.1 and 2.1 with ATHLET 3D-Module

  • Pescador, E. Diaz;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3182-3195
    • /
    • 2021
  • The implementation and validation of multi-dimensional (multi-D) features in thermal-hydraulic system codes aims to extend the application of these codes towards multi-scale simulations. The main goal is the simulation of large-scale three-dimensional effects inside large volumes such as piping or vessel. This novel approach becomes especially relevant during the simulation of accidents with strongly asymmetric flow conditions entailing density gradients. Under such conditions, coolant mixing is a key phenomenon on the eventual variation of the coolant temperature and/or boron concentration at the core inlet and on the extent of a local re-criticality based on the reactivity feedback effects. This approach presents several advantages compared to CFD calculations, mainly concerning the model size and computational efforts. However, the range of applicability and accuracy of the newly implemented physical models at this point is still limited and needs to be further extended. This paper aims at contributing to the validation of the multi-D features of the system code ATHLET based on the simulation of the Tests 1.1 and 2.1, conducted at the test facility ROCOM. Overall, the multi-D features of ATHLET predict reasonably well the evolution from both experiments, despite an observed overprediction of coolant mixing at the vessel during both experiments.