• Title/Summary/Keyword: System Capacity

Search Result 8,714, Processing Time 0.036 seconds

Benchmark Performance Analysis of Vapor Compression System with Capacity Modulation Compressor (에어컨의 고효율화를 위한 용량가변 방식 비교에 관한 연구)

  • 유윤호;황윤제;김철민;조관식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.98-107
    • /
    • 2002
  • The performance of a capacity controlled system, which are tandem, pole change, bypass and inverter driven compressor, has been compared with that of a con- ventional constant speed system. It has been found that capacity modulated system can offer more than 14 percent improvement in SEER over the conventional system. Comparative test results show that two compressor system can attain an improvement in SEER up to 42% over the conventional on/off system, and is feasible without additional investment.

Design and performance analysis of water-to-air heat pump system using double-tube heat exchanger (이중관 열교환기를 사용한 물 대 공기 열펌프 시스템의 설계와 성능해석)

  • Han, D.Y.;Park, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.462-471
    • /
    • 1997
  • The water-to-air heat pump system requires relatively lower energy consumption and less installation space. The heat exchangers used for this system are the finned-tube type for the indoor unit and the double-tube type for the outdoor unit. Mathematical models for this system are developed and programmed in computer. Experimental data from various conditions are obtained and compared with calculated values from the computer simulation program. Differences of cooling capacity and COP are 1.25% and 0.47%, and those of heating capacity and COP are 0.51% and 0.13%, respectively. Simulation results are in good agreement with test results. Therefore, the developed program is effectively used for the design and the performance prediction of water-to-air heat pump system.

  • PDF

Design of Optimal Capacity Coefficients of Flow Control Valves in the Hoist Hydraulic System Using the Complex Method (콤플렉스법에 의한 호이스트 유압회로 유량제어밸브의 최적유량계수 설계)

  • Lee, S.R.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, two pilot operated check valves, two flow control valves. The capacity coefficients of flow control valves should be adjusted for the hoist to operate at moderate speed and minimize the hydraulic energy loss. However, it is difficult to adjust the four capacity coefficients of flow control valves by trial and error for optimal operation. The steady state model of the hoist hydraulic system is derived and the optimal capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

Optimization of Channel Capacity in MIMO Systems

  • Pham Van-Su;Le Minh Tuan;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.172-175
    • /
    • 2005
  • In this paper, a new method to get the optimum channel capacity of a Multiple-Input Multiple­Output (MIMO) system is presented. The proposed method exploits the diagonal structure of channel matrix to maximize the channel capacity. The diagonal format of the channel matrix is formed by multiplying the transmitted signal with the pre-compensated channel PCC) matrix. Numerical simulations show that the proposed method exploiting the diagonal structure of channel matrix could significantly increase the system capacity compared with the system without applying the diagonal structure of channel matrix.

Traffic carring capacity of the ISDN switching system (ISDN 교환기의 트래픽 용량 분석)

  • 이강원
    • Korean Management Science Review
    • /
    • v.10 no.1
    • /
    • pp.107-125
    • /
    • 1993
  • Modern telecommunication switching systems are SPC(Stored Program Control) machines handling voice, data and other kinds of traffic, in an environment which tends to be fully digital switching and transmission. The throughput of such systems is determined by the real time capacity of its centralized or distributed control processors and by the traffic capacity of the switching network. Designers must verify the traffic and call processing capacity of the switching system and check its performance under traffic load before it is put into service. Verification of traffic and call processing capacity of switching systems is one of the problems treated by teletraffic studies ; teletraffic studies are based on stochastic process, queueing theory, simulations and other quantitative methods of decision making. This study suggests the general methodology to evaluate the throughput and performance of the ISDN switching system. TDX-10 ISDN switching system are employed to give illustrative examples of the methodologies discussed in this study.

  • PDF

Traffic Capacity Analysis of the Digital Switching System (전전자 교환기의 트래픽 용량 분석)

  • Lee, Gang-Won;Park, Yeon-Gi;Seo, Jae-Jun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-34
    • /
    • 1987
  • Modern telecommunication switching systems are SPC (Stored Program Control) machines handling voice, data and other kinds of traffic, in an environment which tends to be fully digital switching and transmission. The throughput of such systems is determined by the real time capacity of its centralized or distributed control processors and by the traffic capacity of the switching network. Designers must verify the traffic and call processing capacity of the switching system and check its performance under traffic load before it is put into service. Verification of traffic and call processing capacity of switching systems is one of the problems treated by teletraffic studies; teletraffic studies are based on stochastic process, queueing theory, simulations and other quantitative methods of decision making. This paper reviews the general methodologies to evaluate the throughput and performance of the digital switching system. TDX-10, which is a fully digital switching system under development in ETRI, is employed to give illustrative examples of the methodologies discussed in this paper.

  • PDF

A Study on Optimal Design of DC Substation Capacity for Mass Transit System (전철용 직류변전소의 최적용량설계에 관한 연구)

  • Kim, J.K.;Lee, S.D.;Baek, B.S.;Lee, H.D.;Lee, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1405-1407
    • /
    • 2000
  • This paper is on optimal design for DC substation capacity for Mass Transit System. Three factors are considered for the design i.e. substation arrangements, line configuration and substation power capacity. In this study, we discussed substation power capacity only. At first, DC-fed-traction system is introduced on an outline, a characteristics of train and fed network. Optimal design procedures is described, and modelling for DC-fed-traction system are presented. The circuit-solution method is presented by matrix formula. In order to simulate DC substation power capacity more closely to actual situations, we proposed the program.

  • PDF

Analysis of M-WiMAX Uplink Capacity with Receive Beamforming and Adjacent Channel Interference from WCDMA Downlink

  • Wang, Yu-Peng;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.269-276
    • /
    • 2008
  • In this paper, we analyze the M-WiMAX UL capacity limits under 2-Tier cell layout, considering the effects of random user position, path loss models, fading channel and adjacent channel interference from WCDMA system. In order to make the analysis approximate to the practical system capacity, we propose a MCS-based capacity analysis method considering the effects of PER requirement and the utilized MCS levels in M-WiMAX system. The proposed MCS-based method is validated through a system-level Monte Carlo simulation. Furthermore, a comparison between the conventional Shannon method and the proposed MCS-based method is presented and the optimum cell radius is suggested.

The Control of Superheat and Capacity for a Variable Speed Refrigeration System Based on PI Control Logic

  • Hua, Li;Jeong, Seok-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.2
    • /
    • pp.54-60
    • /
    • 2007
  • In this paper, we suggest the high efficient control method based on general PI control law for a variable speed refrigeration system. In the variable speed refrigeration system, the capacity and the superheat are mainly controlled by an inverter and an electronic expansion valve, respectively, for saving energy and improving coefficient of performance. Thus, we proposed a decoupling model to eliminate the interfering loop between the capacity and superheat at first. Next, we designed PI controller to control the capacity and superheat independently and simultaneously. Finally, the control performance was investigated through some experiments. The experimental results showed that the proposed PI controller based on the decoupling model can obtain good control performance under the various control references and thermal load.

The Long-term Operating Evaluation of the Grid Connected Photovoltaic System (태양광발전시스템의 장기운전에 의한 성능특성 분석)

  • Kim, Eui-Hwan;Kang, Seng-Won;Kim, Jae-Eon
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.28-35
    • /
    • 2011
  • Recently, photovoltaic systems have been devolved into much larger systems up to MW-scale. Photovoltaic industry participants give their focus on power generation capability of photovoltaic modules because their benefits can be decided from the amount of generation. The information on long-term performance change of photovoltaic modules helps to estimate the amount of power generation and evaluate the economic cost-benefits. Long-term performance of a PV system has been analyzed with operation data for 12 years from 1999 to 2010. In the first year, the amount of yearly power generation was 57.7 MWh with 13.2% capacity factor. In 2007, the amount of yearly generation was 44.3 MWh with 10.14% capacity factor, and in 2010, the amount was decreased down to 38.1 MWh with 8.7% capacity factor. The result means that long-term capacity factor has been 4.5% decreased for 12 years and that the amount of generation has been decreased 34.0% for 12 years which is 2.8 % per year. The latter capacity factor has been decreased faster than 0.20%, the average rate for 10 years. The performance decrease of the PV system is meant to be accelerated. The decrease of performance and utilization is due to aged deterioration of photovoltaic modules and lowering conversion efficiency of PCS.