• 제목/요약/키워드: System Calibration

검색결과 2,072건 처리시간 0.028초

Calibration for Color Measurement of Lean Tissue and Fat of the Beef

  • Lee, S.H.;Hwang, H.
    • Agricultural and Biosystems Engineering
    • /
    • 제4권1호
    • /
    • pp.16-21
    • /
    • 2003
  • In the agricultural field, a machine vision system has been widely used to automate most inspection processes especially in quality grading. Though machine vision system was very effective in quantifying geometrical quality factors, it had a deficiency in quantifying color information. This study was conducted to evaluate color of beef using machine vision system. Though measuring color of a beef using machine vision system had an advantage of covering whole lean tissue area at a time compared to a colorimeter, it revealed the problem of sensitivity depending on the system components such as types of camera, lighting conditions, and so on. The effect of color balancing control of a camera was investigated and multi-layer BP neural network based color calibration process was developed. Color calibration network model was trained using reference color patches and showed the high correlation with L*a*b* coordinates of a colorimeter. The proposed calibration process showed the successful adaptability to various measurement environments such as different types of cameras and light sources. Compared results with the proposed calibration process and MLR based calibration were also presented. Color calibration network was also successfully applied to measure the color of the beef. However, it was suggested that reflectance properties of reference materials for calibration and test materials should be considered to achieve more accurate color measurement.

  • PDF

Interferometric Snapshot Spectro-ellipsometry: Calibration and Systematic Error Analysis

  • Dembele, Vamara;Choi, Inho;Kheiryzadehkhanghah, Saeid;Choi, Sukhyun;Kim, Junho;Kim, Cheong Song;Kim, Daesuk
    • Current Optics and Photonics
    • /
    • 제4권4호
    • /
    • pp.345-352
    • /
    • 2020
  • We describe a calibration method to improve the accuracy of interferometric snapshot spectroscopic ellipsometry employing a dual-spectrometer sensor scheme. Conventional spectral wavelength calibration of a spectrometer has been performed by using a calibration lamp having multiple peaks at specific wavelength. This paper shows that such a conventional spectrometer calibration method is inappropriate for the proposed interferometric snapshot spectroscopic ellipsometry to obtain highly accurate ellipsometric phase information. And also, systematic error analysis of interferometric snapshot spectroscopic ellipsometry is conducted experimentally.

구속연산자에 의한 보정 시스템의 관측성에 관한 연구 (Study on the Observability of Calibration System with a Constraint Oprerator)

  • 이민기;김태성;박근우
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.647-655
    • /
    • 2003
  • This paper studies the observability of calibration system with a constraint movement by a constraint operator. The calibration system with the constraint movement need only simple sensing device to check whether the constraint movements are completed within an established range. However, it yields the concern about the poor parameter observability due to the constraint movements. This paper uses the QR-decomposition to find the optimal calibration configurations maximizing the linear independence of rows of a observation matrix. The number of identifiable parameters are examined by the rank of the observation matrix, which represents the parameter observability. The method is applied to a parallel typed machining center and the calibration results are presented. These results verify that the calibration system with low-cost indicators and simple planar table is accurate as well as reliable.

다중 2D 레이저 스캐너 시스템의 외부 표정요소 캘리브레이션을 위한 시뮬레이션 기반 표적 배치 결정 기법 (Simulation based Target Geometry Determination Method for Extrinsic Calibration of Multiple 2D Laser Scanning System)

  • 주성하;윤상현;박상윤;허준
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.443-449
    • /
    • 2018
  • SLAM (Simultaneous Localization and Mapping) 기반 모바일 매핑 시스템을 활용한 실내 공간의 포인트 클라우드 취득은 건축물의 유지, 관리를 위한 as-built BIM (Building Information Model) 구축의 기초 공정이다. 본 연구에서는 다중 2D 레이저 스캐너로 구성된 모바일 매핑 시스템의 구축을 위한 시뮬레이션 기반 검정(calibration) 표적의 구조 결정 방법을 제안하였다. 2D 레이저 스캐너의 외부 표정요소 검정을 위해 (1) 원형, (2) 사각형, (3) 이중 원형, (4) 이중 사각형 형태의 표적을 구성하였다. 시뮬레이션을 통해 얻어진 각 표적 관측 값을 토대로, 최소제곱법 기반의 외부 표정요소 검정을 수행하였다. 그 결과 사각형 형태의 표적 구조가 주어진 시스템의 검정에 가장 적합한 형태임을 확인하였다. 또한 외부 표정요소 간의 높은 상관성을 확인할 수 있었으며, 표적의 구조에 따른 외부 표정요소의 검정 결과가 상이한 것으로 나타났다.

Combined Static and Dynamic Platform Calibration for an Aerial Multi-Camera System

  • Cui, Hong-Xia;Liu, Jia-Qi;Su, Guo-Zhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2689-2708
    • /
    • 2016
  • Multi-camera systems which integrate two or more low-cost digital cameras are adopted to reach higher ground coverage and improve the base-height ratio in low altitude remote sensing. To guarantee accurate multi-camera integration, the geometric relationship among cameras must be determined through platform calibration techniques. This paper proposed a combined two-step platform calibration method. In the first step, the static platform calibration was conducted based on the stable relative orientation constraint and convergent conditions among cameras in static environments. In the second step, a dynamic platform self-calibration approach was proposed based on not only tie points but also straight lines in order to correct the small change of the relative relationship among cameras during dynamic flight. Experiments based on the proposed two-step platform calibration method were carried out with terrestrial and aerial images from a multi-camera system combined with four consumer-grade digital cameras onboard an unmanned aerial vehicle. The experimental results have shown that the proposed platform calibration approach is able to compensate the varied relative relationship during flight, acquiring the mosaicing accuracy of virtual images smaller than 0.5pixel. The proposed approach can be extended for calibrating other low-cost multi-camera system without rigorously mechanical structure.

불확도 요인 분석을 통한 교정 시스템 적합성 평가 및 시험기준 결정 방안 (Calibration System Suitability Evaluation and Test Limits Determination Method through Factor Analysis of Uncertainty)

  • 김홍탁;김부일
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1139-1144
    • /
    • 2019
  • 정밀측정장비의 성능을 진단 및 확인하는 교정 시스템은 교정결과의 신뢰성 확보를 위해 국제규격의 요구조건을 준수함으로 교정결과의 오판정 위험을 최소화하고 있다. 본 논문에서는 교정기관에서 고성능의 장비를 획득 및 운영하기에 불가능한 경우 불확도 요인 분석을 통한 교정 시스템 적합성 평가 방안과 가드밴드 기법을 이용하여 성능기준을 대체하는 최적화된 시험기준 산출모형을 제안한다. 제안된 방법은 교정 시스템의 정량적인 평가기준과 국제규격에서 요구되는 허위수락위험 확률 기준을 충족을 위한 최적화된 시험기준을 제공한다.

Calibration of digital wide-range neutron power measurement channel for open-pool type research reactor

  • Joo, Sungmoon;Lee, Jong Bok;Seo, Sang Mun
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.203-210
    • /
    • 2018
  • As the modernization of the nuclear instrumentation system progresses, research reactors have adopted digital wide-range neutron power measurement (DWRNPM) systems. These systems typically monitor the neutron flux across a range of over 10 decades. Because neutron detectors only measure the local neutron flux at their position, the local neutron flux must be converted to total reactor power through calibration, which involves mapping the local neutron flux level to a reference reactor power. Conventionally, the neutron power range is divided into smaller subranges because the neutron detector signal characteristics and the reference reactor power estimation methods are different for each subrange. Therefore, many factors should be considered when preparing the calibration procedure for DWRNPM channels. The main purpose of this work is to serve as a reference for performing the calibration of DWRNPM systems in research reactors. This work provides a comprehensive overview of the calibration of DWRNPM channels by describing the configuration of the DWRNPM system and by summarizing the theories of operation and the reference power estimation methods with their associated calibration procedure. The calibration procedure was actually performed during the commissioning of an open-pool type research reactor, and the results and experience are documented herein.

Calibration of Structured Light Vision System using Multiple Vertical Planes

  • Ha, Jong Eun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.438-444
    • /
    • 2018
  • Structured light vision system has been widely used in 3D surface profiling. Usually, it is composed of a camera and a laser which projects a line on the target. Calibration is necessary to acquire 3D information using structured light stripe vision system. Conventional calibration algorithms have found the pose of the camera and the equation of the stripe plane of the laser under the same coordinate system of the camera. Therefore, the 3D reconstruction is only possible under the camera frame. In most cases, this is sufficient to fulfill given tasks. However, they require multiple images which are acquired under different poses for calibration. In this paper, we propose a calibration algorithm that could work by using just one shot. Also, proposed algorithm could give 3D reconstruction under both the camera and laser frame. This would be done by using newly designed calibration structure which has multiple vertical planes on the ground plane. The ability to have 3D reconstruction under both the camera and laser frame would give more flexibility for its applications. Also, proposed algorithm gives an improvement in the accuracy of 3D reconstruction.

로봇의 위치 정밀도 측정을 위한 LTS의 설계 및 제작 (Design and Manufacture of Laser Tracking System for Measuring Position Accuracy of Robots)

  • 황성호;이호길;최령락;송웅희;김진영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.434-434
    • /
    • 2000
  • It is the main problem to measure the position and orientation of a robot end effector for the calibration of robots. The calibration methods can be used as a tool to improve the accuracy of robots without change of the arm or control architecture of robots. But such calibration methods require the accurate measurements. Dynamic measurement of position and orientation Provides a solution of this problem and improves dynamic accuracy by dynamic calibration o( robots. This paper describes the development o( the laser tracking system capable of determining the static and dynamic performance of industrial robots. The structure and system components are presented and basic experimental results are included to demonstrate the instrument performance. The system can be applied to the remote controlled mobile robots as weil as the calibration of robots.

  • PDF

On-Site vs. Laboratorial Implementation of Camera Self-Calibration for UAV Photogrammetry

  • Han, Soohee;Park, Jinhwan;Lee, Wonhee
    • 한국측량학회지
    • /
    • 제34권4호
    • /
    • pp.349-356
    • /
    • 2016
  • This study investigates two camera self-calibration approaches, on-site self-calibration and laboratorial self-calibration, both of which are based on self-calibration theory and implemented by using a commercial photogrammetric solution, Agisoft PhotoScan. On-site self-calibration implements camera self-calibration and aerial triangulation by using the same aerial photos. Laboratorial self-calibration implements camera self-calibration by using photos captured onto a patterned target displayed on a digital panel, then conducts aerial triangulation by using the aerial photos. Aerial photos are captured by an unmanned aerial vehicle, and target photos are captured onto a 27in LCD monitor and a 47in LCD TV in two experiments. Calibration parameters are estimated by the two approaches and errors of aerial triangulation are analyzed. Results reveal that on-site self-calibration excels laboratorial self-calibration in terms of vertical accuracy. By contrast, laboratorial self-calibration obtains better horizontal accuracy if photos are captured at a greater distance from the target by using a larger display panel.