• Title/Summary/Keyword: System Calibration

Search Result 2,067, Processing Time 0.026 seconds

A Study on the Camera Calibration Using Lens Distortion Model (렌즈의 왜곡 모델을 이용한 카메라 보정에 관한 연구)

  • Dong Min Woo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.56-68
    • /
    • 1994
  • The objective of camera calibration is to determine the internal optical characteristics of camera and the three-dimensional position and orientation of camera with respect to the real world. Calibration procedure for computer vision should be automatical, accurate and applicable to general purpose cameras and lenses. In this paper, we present camera calibration method which meets the above requirements. The algorithm is based on the two-stage method which takes into account lens distortion in the second stage. In this paper, the overdetermined nonlinear system is established in terms of the constraints to all directions and our calibration algorithm is proposed which is constructed by using Marquardt iterations and our calibration algorithm is proposed which is constructed by using Marquardt iteration method in solving nonlinear equations. Experimental results indicate that lens distortion should be taken into consideration for the calibration of the general-purpose lens. With 24 calibration points acquired out of 512$\times$512 image, the proposed algorithm came up with average error of less than 1 pixel and showed a higher accuracy over the conventional two-stage method.

  • PDF

Virtual In-situ Sensor Calibration and the Application in Unitary Air Conditioners (유닛형 공기조화기 센서의 가상보정 방법 및 적용 특성 분석)

  • Yoon, Sungmin;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.65-72
    • /
    • 2018
  • Since data-driven building technologies have been widely applied to building energy systems, the accuracy of building sensors has more impacts on the building performance and system performance analysis. Various building sensors, however, can have typical errors including a random error (noise) and a systematic error (bias). The systematic error is indicated by the difference between the mean of measurements and their true value. It may occur due to the sensor's physical condition, measured phenomena, working environments inside the systems. Unfortunately, a conventional calibration method has limitations in calibrating the systematic errors because of the difference between working environments and calibration conditions. In such situations, a novel sensor calibration method is needed to handle various sensor errors, especially for systematic errors, in building energy systems having various thermodynamic environments. This study proposes a building sensor calibration method named Virtual In-situ Calibration (VIC) and shows how it is applied into a real building system and how it solves the sensor errors.

Review of Revised KOLAS Standard Regulations for Test and Calibration Laboratories: General Requirements for a Competence of Management System (KOLAS 시험 및 교정기관 운영을 위한 개정된 표준 규정 리뷰: 적격성에 대한 일반 요구사항)

  • Kim, Hee Sun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.334-337
    • /
    • 2020
  • Korea Laboratory Accreditation Scheme (KOLAS) introduces a new standard for test and calibration laboratories to operate management system and to produce valid results in accordance with the requirements of KS Q ISO/IEC 17025. The standard is based on the national standard law for the accreditation of test, inspection and calibration laboratories. International Laboratory Accreditation Cooperation (ILAC) has recently established its new criteria. The accredited test and calibration laboratories should complete the transition of their management system by November 2020 following KS Q ISO/IEC 17025:2017. A total of 899 of test, inspection and calibration laboratories in Korea are influenced by the transition policy. This paper summarized general requirements for a competence of laboratory management system.

Long-term Stability Optimization of Dynamic Spectroscopic Ellipsometery based on Dual-wavelength Calibration (이중 파장 보정방법 기반 다이나믹 분광타원편광계의 안정도 최적화)

  • Choi, Inho;Kheiryzadehkhanghah, Saeid;Choi, Sukhyun;Hwang, Gukhyeon;Shim, Junbo;Kim, Daesuk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.178-183
    • /
    • 2021
  • This paper describes a dynamic spectroscopic ellipsometry based on dual-wavelength calibration. DSE provides ellipsometric parameters at rates above 20 Hz, but the interferometer's sensitivity to temperature makes it difficult for that proposed system to maintain stable 𝜟k over long periods of time. To solve this problem, we set up an additional path in the DSE to perform simulations of the polarization phase calibration method using dual wavelengths. Through simulation, we were able to eliminate most of the polarization phase error and maintain a stable 𝜟k in the long-term stability experiment for 10 hours. This is the result that the 𝜟k stability of the proposed system is improved tens of times compared to the existing system.

Development of Portable Calibration System for Non-Contact Water Meters (비접촉식 수위계를 위한 이동형 교정시스템 개발)

  • Hong, Sung-Taek;Shin, Gang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1808-1815
    • /
    • 2016
  • Stable operation of the dam and the river is directly related to the life and property of citizens, and hydrological observation data reliability is essential to the safety against disaster. Even though real-time data acquisition with high accuracy is needed for scientific and reliable water resources management, currently operating water gauges installed on the upper and down stream of dams or rivers are not easy to be calibrated or corrected on site to ensure higher reliability. K-water Institute has been operating an international accredited calibration laboratory for flows meters, rainfall and water gauges. Rainfall gauges are calibrated in the fixed standard room or on-site. However, due to the absence of on-site calibration procedure and system, on-site calibration for the water gauges are performed by an external agency. Therefore, a development of standard calibration procedure and system for on-site calibration of water gauges is needed to improve the reliability of observed hydrological data.

Three Degrees of Freedom Global Calibration Method for Measurement Systems with Binocular Vision

  • Xu, Guan;Zhang, Xinyuan;Li, Xiaotao;Su, Jian;Lu, Xue;Liu, Huanping;Hao, Zhaobing
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.107-117
    • /
    • 2016
  • We develop a new method to globally calibrate the feature points that are derived from the binocular systems at different positions. A three-DOF (degree of freedom) global calibration system is established to move and rotate the 3D calibration board to an arbitrary position. A three-DOF global calibration model is constructed for the binocular systems at different positions. The three-DOF calibration model unifies the 3D coordinates of the feature points from different binocular systems into a unique world coordinate system that is determined by the initial position of the calibration board. Experiments are conducted on the binocular systems at the coaxial and diagonal positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.573 mm, 0.520 mm and 0.528 mm at the coaxial positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.495 mm, 0.556 mm and 0.627 mm at the diagonal positions. This method provides a global and accurate calibration to unity the measurement points of different binocular vision systems into the same world coordinate system.

A New Calibration Algorithm of a Five-Hole Pressure Probe for Flow Velocity Measurement (유동속도계측을 위한 5공압력프로브의 새로운 교정 알고리듬)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2008
  • This paper investigated the new calibration algorithm of a straight-type five-hole pressure probe necessary for calculating three-dimensional flow velocity components. The new data reduction method Includes a look-up, a geometry transformation such as the translation and reflection of nodes, and a binary search algorithm. This new calibration map was applied up to the application angle, ${\pm}55^{\circ}$ of a probe. As a result, this data reduction method showed a perfect performance without any kind of interpolation errors In calculating yaw and pitch angle from the calibration map.

  • PDF

Precision Phase Calibration System of Accelerometers (가속도계 정밀 위상 교정 시스템)

  • Lee, Yang-Bong;Jung, Sung-Soo;Jin, Jong-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.585-590
    • /
    • 2011
  • Accelerometers have been exploited widely in various fields from monitoring vibration of precision machines to detecting an earthquake wave. The precision calibration of the accelerometers is required to maintain the measurement reliability when measuring the vibration of objects with accelerometers for modal analysis. Among evaluation factors for determining sensitivity of accelerometers, phase delay term should be also considered for accurate calibration. In this paper, a new calibration system of accelerometers capable of measuring phase delay as well as magnitude of its sensitivity was proposed and realized in the frequency range of 20 Hz to 5 kHz.

System calibration method for Silicon wafer warpage measurement (실리콘 웨이퍼 휨형상 측정 정밀도 향상을 위한 시스템변수 보정법)

  • Kim, ByoungChang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.139-144
    • /
    • 2014
  • As a result of a mismatch of the residual stress between both sides of the silicon wafer, which warps and distorts during the patterning process. The accuracy of the warpage measurement is related to the calibration. A CCD camera was used for the calibration. Performing optimization of the error function constructed with phase values measured at each pixel on the CCD camera, the coordinates of each light source can be precisely determined. Measurement results after calibration was performed to determine the warpage of the silicon wafer demonstrate that the maximum discrepancy is $5.6{\mu}m$ with a standard deviation of $1.5{\mu}m$ in comparison with the test results obtained by using a Form TalySurf instrument.

Development and Application of Internet Remote Calibration System in the field of DC and LF (직류 저주파 분야 인터넷 원격교정시스템의 개발과 활용)

  • Jung, Jae-Kap;Kim, Kyu-Tae;Park, Seung-Nam;Song, Yang-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2020-2021
    • /
    • 2003
  • Korea Research Institute of Standards and Science (KRISS) has developed a Web-based, remote, Internet calibration system to calibrate the Fluke 5700A/5720A calibrator using a transportable standard: specifically, multifunction transfer standard 4950. Although the uncertainty for the Internet calibration is up to two times larger than that using conventional manual calibration, it has many advantages: no need to transport the customer equipment, a reduction in the calibration service time, a directly enforced traceability to the national standards, convenience, and ease of use for the customers.

  • PDF