• Title/Summary/Keyword: Synthetic aperture signal processing

Search Result 54, Processing Time 0.027 seconds

Beamforming Technology in Medical Ultrasound System (초음파진단기의 빔포밍 기술)

  • Bae, Moo-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.551-563
    • /
    • 2012
  • Medical ultrasound systems have been used since 1950s, and are now widely used in most hospitals as indispensable diagnostic imaging systems. Since array probe was introduced in 1970s, beamforming technology using electronic signal processing has been adopted to the medical ultrasound system, and has been improved. Beamforming is a important technology which defines the resolution of the ultrasound system. In this paper, the technologies are introduced from basic beamforming principles to current trend. They include principles of beamforming using array probe, basic theory, and practical implementation, and recent topics of synthetic aperture imaging, adaptive beamforming, 2-dimensional beamforming using 2-dimensional array are also introduced. These various technologies will improve system performances continuously by merging innovatively with various technologies in other fields.

GPU Acceleration of Range Doppler Algorithm for Real-Time SAR Image Generation (실시간 SAR 영상 생성을 위한 Range Doppler Algorithm의 GPU 가속)

  • Dong-Min Jeong;Woo-Kyung Lee;Myeong-Jin Lee;Yun-Ho Jung
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.265-272
    • /
    • 2023
  • In this paper, a GPU-accelerated kernel of range Doppler algorithm (RDA) was developed for real-time image formation based on frequency modulated continuous wave (FMCW) synthetic aperture radar (SAR). A pinned memory was used to minimize the data transfer time between the host and the GPU device, and the kernel was configured to perform all RDA operations on the GPU to minimize the number of data transfers. The dataset was obtained through the FMCW drone SAR experiment, and the GPU acceleration effect was measured in an intel i7-9700K CPU, 32GB RAM, and Nvidia RTX 3090 GPU environment. Including the data transfer time between host and devices, it was measured to be accelerated up to 3.41 times compared to the CPU, and when only the acceleration effect of operation was measured without including the data transfer time, it was confirmed that it could be accelerated up to 156 times.

Evaluation of SAR Image Quality

  • Lee Young-ran;Kim Kwang Young;Kwak Sunghee;Shin Dongseok;Jeong Soo;Kim Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.397-400
    • /
    • 2004
  • Synthetic Aperture Radar(SAR) is an active micro­wave instrument that performs high-resolution observation under almost all weather conditions. Although there are many advantages of SAR instrument, many complicated steps are involved in order to generate SAR image products. Many research and algorithms have been proposed to process radar signal and to increase the quality of SAR products. However, it is hard to find research which compare the quality of SAR products generated with different algorithms and processing methods. In our previous research, a SAR processing s/w was developed for a ground station. In addition, quality assessment procedures and their test parameters inside a SAR processor was proposed. The purpose of this paper is to evaluate the quality of SAR images generated from the developed SAR processing s/w. However, If there are no direct measurements such as radar reflector or scattering field measurement values it is difficult to compare SAR images generated with different methods. An alternative procedures and parameters for SAR image quality evaluation are presented and the problems involved in the comparison methods are discussed. Experiments based on real data have been conducted to evaluate and analyze quality of SAR images.

  • PDF

SAR(Synthetic Aperture Radar) 3-Dimensional Scatterers Point Cloud Target Model and Experiments on Bridge Area (영상레이더(SAR)용 3차원 산란점 점구름 표적모델의 교량 지역에 대한 적용)

  • Jong Hoo Park;Sang Chul Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.1-8
    • /
    • 2023
  • Modeling of artificial targets in Synthetic Aperture radar (SAR) mainly simulates radar signals reflected from the faces and edges of the 3D Computer Aided Design (CAD) model with a ray-tracing method, and modeling of the clutter on the Earth's surface uses a method of distinguishing types with similar distribution characteristics through statistical analysis of the SAR image itself. In this paper, man-made targets on the surface and background clutter on the terrain are integrated and made into a three-dimensional (3D) point cloud scatterer model, and SAR image were created through computational signal processing. The results of the SAR Stripmap image generation of the actual automobile based SAR radar system and the results analyzed using EM modeling or statistical distribution models are compared with this 3D point cloud scatterer model. The modeling target is selected as an bridge because it has the characteristic of having both water surface and ground terrain around the bridge and is also a target of great interest in both military and civilian use.

Correction of Continuous Motion Effects for Airborne FMCW-SAR System (항공기 기반 FMCW-SAR 시스템의 연속이동효과 보정)

  • Hwang, Ji-hwan;Jung, Jungkyo;Kim, Duk-jin;Kim, Jin-Woo;Shin, He-Sub;Ok, Jae-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.410-418
    • /
    • 2017
  • Results of an analysis of the continuous motion effect for FMCW-SAR system and a signal processing to correct it are presented in this paper. SAR images reconstructed by back-projection algorithm are included as well. To analyze how platform velocity and sampling frequency affect the continuous motion effect, FMCW signal model was used, and the signal processing in time-doppler(t, $k_u$) domain was adopted. Then, back-projection algorithm and modified matched-filter was used to reconstruct SAR images, and it was validated using measured data by airborne FMCW-SAR system in X-band frequency.

An Implementation of Interferometric Radar Altimeter Simulator (간섭계 레이더 고도계용 시뮬레이터 구현)

  • Paek, Inchan;Lee, Sangil;Yoo, Kyungju;Jang, Jong Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.81-87
    • /
    • 2015
  • We present an implementation result of a computer GUI-based simulator using MATLAB to verify the performance of interferometric radar altimeter(IRA) which is possible to measure the slant range altitude and the cross-track angle to the nearest point for terrain aided navigation(TAN). After a brief description of the principle of TAN and IRA, we present that the grids are divided for the modeling of the reflected signal in digital elevation map(DEM) and so the radar cross section(RCS) of each grid is calculated and the signal-noise ratio(SNR) of the reflected signal in the radar beam width. And the signal processing procedures of the IRA and the structure of the IRA simulator are shown.

Enhancement of Ionospheric Correction Method Based on Multiple Aperture Interferometry (멀티간섭기법에 기반한 이온왜곡 보정기법의 보완)

  • Lee, Won-Jin;Jung, Hyung-Sup;Chae, Sung-Ho;Baek, Wonkyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.101-110
    • /
    • 2015
  • Synthetic Aperture Radar Interferometry (InSAR) is affected by various noise source such as atmospheric artifact, orbital error, processing noise etc.. Especially, one of the dominant noise source for long-wave SAR system, such as ALOS PALSAR (L-band SAR satellite) is the ionosphere effect because phase delays on radar pulse through the ionosphere are proportional to the radar wavelength. To avoid misinterpret of phase signal in the interferogram, it is necessary to detect and correct ionospheric errors. Recently, a MAI (Multipler Aperture SAR Interferometry) based ionospheric correction method has been proposed and considered one of the effective method to reduce phase errors by ionospheric effect. In this paper, we introduce the MAI-based method for ionospheric correction. Moreover we propose an efficient method that apply the method over non-coherent area using directional filter. Finally, we apply the proposed method to the ALOS PALSAR pairs, which include the west sea coast region in Korea. A polynomial fitting method, which is frequently adopted in InSAR processing, has been applied for the mitigation of phase distortion by the orbital error. However, the interferogram still has low frequency of Sin pattern along the azimuth direction. In contrast, after we applied the proposed method for ionospheric correction, the low frequency pattern is mitigated and the profile results has stable phase variation values within ${\pm}1rad$. Our results show that this method provides a promising way to correct orbital and ionospheric artifact and would be important technique to improve the accuracy and the availability for L-band or P-band systems.

PHASE-EXTENST10N INVERSE FILTERING ON REAL SAR IMAGES (실제 SAR 영상에 대한 위상 확장 역필터링의 적용)

  • Do, Dae-Won;Song, Woo-Jin;Kwon, Jun-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.547-550
    • /
    • 2001
  • Through matched filtering synthetic aperture radar (SAR) produces high-resolution imagery from data collected by a relative small antenna. While the impulse response obtained by the matched filter approach produces the best achievable signal-to-noise ratio, large sidelobes must be reduced to obtain higher-resolution SAR images. So, many enhancement methods of SAR imagery have been proposed. As a deconvolution method, the phase-extension inverse filtering is based on the characteristics of the matched filtering used in SAR imaging. It improves spatial resolution as well as effectively suppresses the sidelobes with low computational complexity. In the phase-extension inverse filtering, the impulse response is obtained from simulation with a point target. But in a real SAR environment, for example ERS-1, the impulse response is distorted by many non-ideal factors. So, in the phase-extension inverse filtering for a real SAR processing, the magnitudes of the frequency transfer function have to be compensated to produce more desirable results. In this paper, an estimation method to obtain a more accurate impulse response from a real SAR image is studied. And a compensation scheme to produce better performance of the phase-extension inverse filtering is also introduced.

  • PDF

Grounding Line Change of Ronne Ice Shelf, West Antarctica, from 1996 to 2015 Observed by using DDInSAR

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Grounding line of a glacier or ice shelf where ice bottom meets the ocean is sensitive to changes in the polar environment. Recent rapid changes of grounding lines have been observed especially in southwestern Antarctica due to global warming. In this study, ERS-1/2 and Sentinel-1A Synthetic Aperture Radar (SAR) image were interferometrically acquired in 1996 and 2015, respectively, to monitor the movement of the grounding line in the western part of Ronne Ice Shelf near the Antarctic peninsula. Double-Differential Interferometric SAR (DDInSAR) technique was applied to remove gravitational flow signal to detect grounding line from the interferometric phase due to the vertical displacement of the tide. The result showed that ERS-1/2 grounding lines are almost consistent with those from Rignot et al. (2011) which used the similar dataset, confirming the credibility of the data processing. The comparison of ERS-1/2 and Sentinle-1A DDInSAR images showed a grounding line retreat of $1.0{\pm}0.1km$ from 1996 to 2015. It is also proved that the grounding lines based on the 2004 MODIS Mosaic of Antarctica (MOA) images and digital elevation model searching for ice plain near coastal area (Scambos et al., 2017), is not accurate enough especially where there is a ice plain with no tidal motion.

Radarsat-1 ScanSAR Quick-look Signal Processing and Demonstration Using SPECAN Algorithm (SPECAN 알고리즘을 이용한 Radatsat-1 ScanSAR Quick-look 신호 처리 및 검증 알고리즘 구현)

  • Song, Jung-Hwan;Lee, Woo-Kyung;Kim, Dong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • As the performance of the spaceborne SAR has been dramatically enhanced and demonstrated through advanced missions such as TerraSAR and LRO(Lunar Reconnaissance Orbiter), the need for highly sophisticated and efficient SAR processor is also highlighted. In Korea, the activity of SAR researches has been mainly concerned with SAR image applications and the current SAR raw data studies are mostly limited to stripmap mode cases. The first Korean spaceborne SAR is scheduled to be operational from 2010 and expected to deliver vast amount of SAR raw data acquired from multiple operational scenarios including ScanSAR mode. Hence there will be an increasing demand to implement ground processing systems that enable to analyze the acquired ScanSAR data and generate corresponding images. In this paper, we have developed an efficient ScanSAR processor that can be directly applied to spaceborne ScanSAR mode data. The SPECAN(Spectrum Analysis) algorithm is employed for this purpose and its performance is verified through RADARSAT-1 ScanSAR raw data taken over Korean peninsular. An efficient quick-look processing is carried out to produce a wide-swath SAR image and compared with the conventional RDA processing case.