• Title/Summary/Keyword: Synthetic Crude Oil

Search Result 10, Processing Time 0.027 seconds

High Value-added Technology of Oil Sand (오일샌드 고부가화기술 동향)

  • Park, Yong-Ki;Choi, Won Choon;Jeong, Soon Yong;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.109-116
    • /
    • 2007
  • As conventional light oil resources deplete, it is becoming necessary to develop unconventional resources. To meet the demand for petrochemical industry, heavier sources such as heavy oil and bitumen are being utilized. Bitumens, a complex hydrocarbon made up of a long chain of molecules, are found in oil sand. It is estimated that 830 billion barrels of oil are located in the oil sand in Alberta, Canada. This paper will review briefly (1) the basic concept of oil sand, bitumen, and heavy oil, (2) methods how to extract oil from oil sand, (3) methods how to upgrade to synthetic crude oil, and (4) economic evaluation of technology.

Algorithm to Estimate Oil Spill Area Using Digital Properties of Image

  • Jang, Hye-Jin;Nam, Jong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.46-54
    • /
    • 2020
  • Oil spill accidents at sea result in a wide range of damages, including the destruction of ocean environments and ecosystems, as well as human illnesses by the generation of harmful gases caused by phase changes in crude oil. When an oil spill occurs, an immediate initial action should be performed to minimize the potential damage. Existing studies have attempted to identify crude oil spillage by calculating the crude oil spill range using synthetic aperture radar (SAR) satellite images. However, SAR cannot capture rapidly evolving events because of its low acquisition frequency. Herein, an algorithm for estimating an oil spill area from an image obtained using a digital camera is proposed. Noise that may occur in the image when it is captured is first eliminated by preprocessing, and then the image is analyzed. After analyzing the characteristics of the digital image, a strategy to binarize an image using the color, saturation, or lightness contained in it is adopted. It is found that the oil spill area can be readily estimated from a digital image, allowing for a faster analysis than any conventional method. The usefulness of the oil spill area measurement was confirmed by applying the developed algorithm to various oil spill images.

Patent Analysis of Oil Sands Technologies (오일샌드 기술(技術)의 특허정보(特許) 분석(分析))

  • Lee, Ki-Bong;Jeon, Sang-Goo;Nho, Nam-Sun;Kim, Kwang-Ho;Shin, Dae-Hyun;Lee, Heoung-Yeoun
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.3-12
    • /
    • 2009
  • Oil sands are sands containing bitumen similar to crude petroleum. Oil sands had not received enough interest because of the high production cost. However, in the current record-high oil price situation, oil sands are considered as new sources for unconventional oil. In this study, patents analysis was performed for the technologies of production of synthetic crude oil from oil sands. The patents covered were open patents applied in Korea, US, Canada, Japan, Europe, and China. The patents were divided into five detailed technologies; mining and in-situ, extraction, upgrading, fuelling, and other technologies. For oil sands technologies, there have been steady patent applications, since the first patent was applied in 1969. The number of patents applied appeared to be affected by the variation of world oil price. The portion of patents applied in US and Canada was about 90% of the overall patents and it means 05 and Canada have led oil sands technologies. Mining and in-situ technologies, and extraction have been developed actively and occupied more than 77% of the overall patents. However, the number of patents applied for mining and in-situ technologies, and extraction has been constant or started to decrease since 2000. The number of patents applied for upgrading technologies increases recently and it shows the development of upgrading technologies is active now.

Physiological Characteristics of Biosurfactant-Producting Bacillus subtilis TBM 3101 (Biosurfactant를 생산하는 Bacillus subtilis TBM 3101의 생리학적 특성)

  • Kim, Seon-A;Lee, Young-Guen;Choi, Yong-Lark;Hwang, Cher-Won;Jeong, Yong-Kee;Joo, Woo-Hong
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • A biosurfactant-producing strain, Bacillus subtilis TBM 3101 was isolated from the soil sample at Tae-Baek Mountain through an antifungal test and emulsification assessment. The strain was assessed, regarding to the microbial growth, by physical and chemical test, surface tension, emulsification activity and stability. The surface tension of the isolate sharply decreased to the minimum 29mN/m at 48 h growth. Of note, its emulsification was stabilized to the highest degree when tributyrin was utilized as a substrate, indicating that in comparison to a variety of synthetic surfactants, the biosurfactant produced by the isolate was significantly similar to synthetic surfactant, tween 20. In addition, the biosurfactant showed high emulsification activity when soybean oil, crude oil and tetradecane were used as a substrate. Thus, these studies could contribute to the detection and development of biosurfactant beneficial to the environment and humans.

Patent Analysis of Oil Sands Bitumen Upgrading Technologies (오일샌드 역청 개질 기술의 특허정보 분석)

  • Lee, Ki Bong;Jeon, Sang Goo;Nho, Nam Sun;Kim, Kwang Ho;Shin, Dae Hyun;Kim, Seon Wook;Kim, Yong Heon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.592-599
    • /
    • 2008
  • Oil sands had not received enough attention due to high production cost. However, as oil price significantly increases, oil sands are receiving more and more interest as unconventional crude oil. The value and applicability of oil sands can be enhanced by upgrading oil sands bitumen to produce synthetic crude oil (SCO). This study analyzed 213 oil sands upgrading patents applied between 1969 and 2006 in US, Canada, Japan, Europe, and Korea. The upgrading technologies could be classified into 9 detailed technologies; hydrocracking, coking, thermal cracking, deasphalting, supercritical technology, bio-technology, hydrotreating, gasification, and others. The number of patents applied for oil sands upgrading increased after 1970, reached a maximum in the early 1980, and slowly increases again in recent years. Korea has a lack of technologies for oil sands. Therefore, the technologies for oil sands production and application, specially, upgrading technologies based on accumulated oil refinery technologies need to be developed to increase self-development ratio of energy resource.

Microbial Degradation of Hydrocarbons in the Waste Oil (미생물에 의한 폐기름 탄화수소의 분해)

  • 정재갑;임운기;신혜자
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.84-91
    • /
    • 1999
  • Sediment samples from the waste-oil spilled sites were screened for microorganisms able to degrade the components of crude oil, and 3 strains that could degrade were obtained. The isolated 3 strains (Xl, X2 and X3) metabolized naphthalene and 2-methyl naphthalene about 80$\%$ as well as hexane and hexadecane about 60~70$\%$ as a sole carbon source in 7 days. The degradation of the waste oil was about 60$\%$. The addition of synthetic surfactant, Triton-X 100 or Tween 20 slightly inhibited the growth of the populations. Xl and X2 were gram negative and X3 was gram positive. Xl and X3 showed ampicillin resistancy. Xl strain having 30kb plasmid has been selected for genetic study. The plasmid was isolated and transformed into E. coli. showing the possibility of the genetically engineered degrader.

  • PDF

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Studies on Amylase and Protease as an Additive Material to the Synthetic Detergent (세제 배합용 Amylase 및 Protease 에 관한 연구)

  • Kim, Yu-Sam;Hong, Yun-Myung;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.38-42
    • /
    • 1970
  • The crude enzyme, tamylase, was produced by cultivating the Bacillus subtilis on wheat bran. It is composed of amylase and protease, and can be used as an additive material to the synthetic detergent, Suny which is manufactured by Ae-kyung Oil and Fat Co. Amylase activity of the enzyme as an additive material to the synthetic detergent; 1. is decreased by increasing the amount of detergent. But inhibitory rate under the practical used concentration of detergent is less than ten percents. 2. have optimal temperature at $ 40^{\circ}C$. 3. have optimal pH of substrate on pH $5{\sim}6.5$. 4. is inhibited by $Fe^{+++}$. When enzyme and detergent are mixed both as powder, the enzyme is good for storage. Proteolytic activity is good at the practical used concentration of the detergent, but it is inhibited by strong concentration.

  • PDF

Modulation of Antibody Responses against Gnathostoma spinigerum in Mice Immunized with Crude Antigen Formulated in CpG Oligonucleotide and Montanide ISA720

  • Intapan, Pewpan M.;Hirunpetcharat, Chakrit;Kularbkaew, Churairat;Yutanawiboonchai, Wiboonchai;Janwan, Penchom;Maleewong, Wanchai
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.637-644
    • /
    • 2013
  • This study aimed to investigate the antibody responses in mice immunized with Gnathostoma spinigerum crude antigen (GsAg) incorporated with the combined adjuvant, a synthetic oligonucleotide containing unmethylated CpG motif (CpG ODN 1826) and a stable water in oil emulsion (Montanide ISA720). Mice immunized with GsAg and combined adjuvant produced all antibody classes and subclasses to GsAg except IgA. IgG2a/2b/3 but not IgG1 subclasses were enhanced by immunization with CpG ODN 1826 when compared with the control groups immunized with non-CpG ODN and Montanide ISA or only with Montanide ISA, suggesting a biased induction of a Th1-type response by CpG ODN. After challenge infection with live G. spinigerum larvae, the levels of IgG2a/2b/3 antibody subclasses decreased immediately and continuously, while the IgG1 subclass remained at high levels. This also corresponded to a continuous decrease of the IgG2a/IgG1 ratio after infection. Only IgM and IgG1 antibodies, but not IgG2a/2b/3, were significantly produced in adjuvant control groups after infection. These findings suggest that G. spinigerum infection potently induces a Th2-type biased response.

Physical and Chemical Characteristics of Solvent-Insolubles and Solvent-Solubles in Oilsands Bitumen (Oilsands Bitumen의 용매 불용분 및 용해분의 물리.화학적 특성 연구)

  • Kim, Kyoung-Hoon;Jeon, Sang-Goo;Nho, Nam-Sun;Kim, Kwang-Ho;Shin, Dae-Hyun;Lee, Ki-Bong;Park, Hyo-Nam;Han, Myung-Wan
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • In this work, we investigated the variation of physical and chemical characteristics of solvent-insolubles and solvent-solubles in Canada's Athabasca oil sands by solvent-insolubles experiments. N-Heptane, n-Hexane, and n-Pentane were tested for solvents and asphaltenes were separated from maltenes by using a modified ASTM D 3279 method. Elemental analysis, boiling point distribution (SIMDIS), molecular weight distribution, heavy metal contents, API gravity, viscosity and SARA fractions were measured for thorough samples. The asphaltenes-removed maltenes contained less sulfur and heavy metal amounts and had lower molecular weight than the original bitumen. N-Pentane solvent could lower sulfur and heavy metal amounts, molecular weight, and viscosity of maltenes compared to the other solvents. Eventually, we confirmed that the obtained experimental data could be used as basic informations of bitumen upgrading processes for the production of SCO (synthetic crude oil).