• Title/Summary/Keyword: Synthesis of thin film

Search Result 287, Processing Time 0.027 seconds

Synthesis and characterization Au doped TiO2 film for photocatalytic function

  • Son, Jeong-Hun;Bae, Byung-Seo;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.280-284
    • /
    • 2015
  • Au doped $TiO_2$ nanoparticles have been synthesized using a reverse micelle technique combined with metal alkoxide hydrolysis and condensation. Au doped $TiO_2$ was coated with glass substrate. The size of the particles and thickness of the coating can be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TTIP within the micro-emulsion. The average size of synthesized Au doped $TiO_2$ nanoparticle was about in the size range of 15 to 25 nm and the Au particles formed mainly the range of 2 to 10 nm in diameter. The effect of synthesis parameters, such as the molar ratio of water to TTIP and the molar ratio of water to surfactant, are discussed. The synthesized nanopaticles were coated on glass substrate by a spin coating process. The thickness of thin film was about 80 nm. The degradation of MB on a $TiO_2$ thin film was enhanced over 20 % efficiency by the incorporation of Au.

Anti-corrosion Properties of SiOxCy(-H) thin Films Synthesized and Oxidized by Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전으로 합성 및 산화 처리된 SiOxCy(-H) 박막의 부식방지 특성)

  • Kim, Gi-Taek;Kim, Yoon Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.201-206
    • /
    • 2020
  • A SiOxCy(-H) thin film was synthesized by atmospheric pressure dielectric barrier discharge(APDBD), and a SiO2-like layer was formed on the surface of the film by oxidation treatment using oxygen plasma. Hexamethylcyclotrisiloxane was used as a precursor for the SiOxCy(-H) synthesis, and He gas was used for stabilizing APDBD. Oxygen permeability was evaluated by forming an oxidized SiOxCy(-H) thin film on a PET film. When the single-layer oxidized SiOxCy(-H) film was coated on the PET, the oxygen gas permeability decreased by 46% compared with bare PET. In case of three-layer oxidized SiOxCy(-H) film, the oxygen gas permeability decreased by 73%. The oxygen permeability was affected by the thickness of the SiO2-like layer formed by oxidation treatment rather than the thickness of the SiOxCy(-H) film. The excellent corrosion resistance was demonstrated by coating an oxidized SiOxCy(-H) thin film on the silver-coated aluminum PCB for light emitting diode (LED).

Metal-assisted grown Si films and semiconducting nanowires for solar cells

  • Kim, Jun-Dong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.13-13
    • /
    • 2010
  • The solar energy conversion will take 10 % global energy need by 2033. A thin film type solar cell has been considered as one of the promising candidates for a large area applicable solar cell fabrication at a low cost. The metal-assisted growth of microcrystalline Si (mc-Si) films has been reported for a quality Si film synthesis at a low temperature. It discusses the spontaneous growth of a Si film above a metal-layer for a thin film solar cell. Quite recently, a substantial demand of nanomaterials has been addressed for cost-effective solar cells. The nanostructure provides a large photoactive surface at a fixed volume, which is an advantage in the effective use of solar power. But the promising of nanostructure active solar cell has not been much fulfilled due mainly to the difficulty in architecture of nanostructures. We present here the Si nanowire (SiNW)-embedded Schottky solar cell. Multiple SiNWs were connected to two different metals to form a Schottky or an ohmic contact according to the metal work function values. It discusses the scheme of rectifying contact between metals and SiNWs and the SiNW-embedded Schottky solar cell performances.

  • PDF

Liquid Phase Deposition of Transition Metal Ferrite Thin Films: Synthesis and Magnetic Properties

  • Caruntu Gabriel;O'Connor Charles J.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.703-709
    • /
    • 2006
  • We report on the synthesis of highly uniform, single phase zinc and cobalt thin films prepared by the Liquid Phase Deposition (LPD) method. X-Ray diffraction, TGA and EDX measurements support the assumption that the as deposited films are constituted by a mixture of crystallized FeOOH and amorphous M(OH)$_2$ (M=Co, Zn) which is converted upon heat treatment in air at 600?C into the corresponding zinc ferrites. The films with adjustable chemical compositions are identified with a crystal structure as spinel-type and present a spherical or rod-like microstructure, depending on the both the nature and concentration of the divalent transition metal ions. Zinc ferrite thin films present a superparamagnetic behavior above blocking temperatures which decrease with increasing the Zn content and are ferromagnetic at 5 K with coercivities ranging between 797.8 and 948.5 Oe, whereas the cobalt ferrite films are ferromagnetic at room temperature with magnetic characteristics strongly dependent on the chemical composition.

Electrochemical Properties and Estimation on Active Material LiMnO2 Synthesis for Secondary

  • Wee, Sung-Dong;Kim, Jong-Uk;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.35-39
    • /
    • 2003
  • This paper is contents on the orthorhombic crystalline calcined by the solid phase method with LiMnO$_2$ thin film structured as the result which an average pore diameter of power was 132.3${\AA}$ in porosity analysis. Voltage ranges are able to get the properties of charge and discharge for experimental results of LiMnO$_2$ thin film were 2.2V 4.3V. The current density and scan speed were 0. 1㎃/$\textrm{cm}^2$ and 0.2㎷/sec respectively. Properties of the charge and discharge are obtained by optimum experiment condition parameters. Li dense ratio of the LiMnO$_2$ thin film that discharged capacities were 87㎃h/g have been 96.9[ppm] at 670.784[nm] wavelength. The dense ratio of Mn analyzed to 837[ppm] at 257.610[nm] wavelength. It can be estimated the quality of the LiMnO$_2$ thin film as that the wrong LiMnO$_2$ thin film pulled up from cell of electrolyte and became dry it at 800$^{\circ}C$. The results of SEM and XRD were the same as that of original researchers.

High-Performance and Fabrication of Graphene-based Flexible Supercapacitor

  • Ra, Eun Ju;Han, Jae Hee;Kim, Kiwoong;Lee, Sun Suk;Kim, Tae-Ho;An, Ki-Seok;Lim, Jongsun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.442-442
    • /
    • 2014
  • Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, is one of the most promising energy-storage devices because of its high power density, super-high cycle life, and safe operation. We herein report a synthesis of graphene-based flexible films by kneading method. Thus, a device can be readily made by sandwiching a polymer membrane included ionic liquid electrolytes between two identical graphene-based flexible films. Devices made with these electrodes exhibit ultrahigh energy density values while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-energy, flexible electronics.

  • PDF

Synthesis and Properties of CuNx Thin Film for Cu/Ceramics Bonding

  • Chwa, Sang-Ok;Kim, Keun-Soo;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.222-226
    • /
    • 1998
  • $Cu_3N$ film deposited on silicon oxide substrate by r.f. reactive sputtering technique. Synthesis and properties of copper nitride film were investigated for its possible application to Cu metallization as adhesive interlayer between copper and $SiO_2. Cu_3N$ film was synthesized at the substrate temperature ranging from $100^{\circ}C$ to $200^{\circ}C$ and at nitrogen gas ratio above $X_{N2}=0.4. Cu_3N, CuN_x$, and FGM-structured $Cu/CuN_x$ films prepared in this work passed Scotch-tape test and showed improved adhesion property to silicon oxide substrate compared with Cu film. Electrical resistivity of copper nitride film had a dependency on its lattice constant and was ranged from 10-7 to 10-1 $\Omega$cm. Copper nitride film was, however, unstable when it was annealed at the temperature above $400^{\circ}C$.

  • PDF

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane

  • Son, Moon;Choi, Hyeongyu;Liu, Lei;Park, Hosik;Choi, Heechul
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • Different types of polyethersulfone (PES) support layer for a thin film composite (TFC) membrane were synthesized under various synthesis conditions using the phase inversion method to study the combined effects of substrate, adhesive, and pore former. The permeability, selectivity, pore structure, and morphology of the prepared membranes were analyzed to evaluate the membrane performance. The combined use of substrate, adhesive, and pore former produced a thinner dense top layer, with more straight finger-like pores. The pure water permeation (PWP) of the optimized PES membrane was $27.42L/m^2hr$ (LMH), whereas that of bare PES membrane was 3.24 LMH. Moreover, membrane selectivity, represented as divalent ion ($CaSO_4$) rejection, was not sacrificed under the synthesis conditions, which produced the dramatically enhanced PWP. The high permeability and selectivity of the PES membrane produced under the optimized synthesis conditions suggest that it can be utilized as a potential support layer for TFC membranes.

LS-MOCVD OF BARIUM STRONTIUM TITANATE THIN FILMS USING NOVEL PRECURSORS

  • Kwon, Hyun-Goo;Oh, Young-Woo;Park, Jung-Woo;Lee, Young-Kuk;Kim, Chang-Gyoun;Kim, Do-Jin;Kim, Yunsoo
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.19-19
    • /
    • 2002
  • Perovskite-type titanate dielectrics have attracted much attention in memory devices such as DRAMs or FeRAMs due to their high dielectric constants. However, low volatility of the Ba, Sr, Pb or Zr precursors with only thd ligands has limitations in obtaining high quality thin films by liquid source metal organic chemical vapor deposition (LS-MOCVD) processes. To improve the volatility of these precursors, many attempts have been made such as adding polyether ligands to satisfy the coordinative saturation. We report the synthesis of new precursors Ba(thd)₂(tmeea) and Sr(thd)₂(tmeea), where tmeea = tris[2-(2-methoxyethoxy)ethyl]amino, and LS-MOCVD of barium strontium titanate (BSTO) thin films using these precursors. Due to increased basicity of amines compared with ethers, it is expected that the nitrogen-donor ligand will make a strong bond to a metal than an analogous oxygen-donor ligand, consequently improving the volatility and thermal behavior of these precursors. Thin films of BSTO were grown on Pt(111)/SiO₂/Si(100) substrates by LS-MOCVD using a cocktail source consisting of the conventional Ti precursor Ti(thd)₂(O/sup i/Pr), and these new Ba and Sr precursors. As-grown films were characterized by XPS, SEM, XRD, XRF, and C-V and I-V measurements. BSTO films grown at 420℃ were stoichiometric barium strontium titanate with very smooth surface morphology and their dielectric constants were found to be as targe as 450. Dependence of the composition, microstructure and the electrical properties of the BSTO films on the growth temperature, annealing temperature, working pressure, and the composition of the cocktail source will be discussed.

  • PDF

Synthesis of diamond thin film on WC-Co by RF PACVO (고주파 플라즈마 CVD에 의한 초경합금상에 다이아몬드 박막의 합성)

  • 김대일;이상희;박종관;박구범;조기선;박상현;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.452-455
    • /
    • 2000
  • Diamond thin films were synthesized on WC-Co substrate at various experimental parameters using 13.56MHz RF PACVD(radio frequency plasma-assisted chemical vapor deposition). In order to increase the nucleation density, the WC-Co substrate was polished with 3$\mu\textrm{m}$ diamond paste. And the WC-Co substrate was pretreated in HNO$_3$: H$_2$O = 1:1 and O$_2$ plasma. In H$_2$-CH$_4$gas mixture, the crystallinity of thin film increased with decreasing CH$_4$concentration at 800W discharge power and 20torr reaction pressure. In H$_2$-CH$_4$-O$_2$gas mixture, the crystallinity of thin film increased with increasing O$_2$concentration at 800W discharge power, 20torr reaction pressure and 4% CH$_4$concentration.

  • PDF