• 제목/요약/키워드: Synthesis of aluminum magnesium silicate

검색결과 3건 처리시간 0.019초

규산알루민산마그네슘의 합성조건과 유동학적 특성 (Synthesis Conditions and Rheological Characteristics of Aluminum Magnesium Silicate)

  • 신화우;정동훈
    • 약학회지
    • /
    • 제39권1호
    • /
    • pp.68-77
    • /
    • 1995
  • Aluminum magnesium silicate was synthesized by reacting the mixed solutions of sodium aluminate and magnesium chloride with sodium silicate solution in this study. The optimal synthesis conditions based on the yield of the product has been attained according to Box-Wilson experimental design. It was found that the optimal synthetic conditions of aluminum magnesium silicate were as follows: Reaction temperature=$69~81^{\circ}C$; concentration of two reactants, sodium aluminate and magnesium chloride= 13.95~14.44 w/w%; molar concentration ratio of the two reactants, [NaAlO$_{2}$]/MgCl$_{2}$]=3.63~4.00; reaction time= 12~15 min; drying temp. of the product=$70~76^{\circ}C$. Aluminum magnesium silicate synthesized under the optimal synthesis condition was dispersed in 0.75, 1.0 and 1.5w/w% aqueous solution or suspension of six dispersing agents, and the Theological properties of the dispersed systems prepared have been investigated at $15^{\circ}C$ and $25^{\circ}C$ using Brookfield LVT Type Viscometer. The acid-consuming capacity of the most excellent product was 272~278 ml of 0.1N-HCl per gram of the antacid. The flow types of 5.0 w/w% aluminum magnesium silicate suspension were dependent upon the kind and concentration of dispersing agents added. The apparent viscosity of the suspension was generally increased with concentration of dispersing agents and was not significantly changed or decreased as the temperature was raised. A dispersing agent, hydroxypropyl cellulose suspension, exhibited an unique flow behavior of antithixotropy. The flow behavior of the suspension dispersed in a given dispersing agent not always coincided with that of the dispersing agent solution or suspension itself.

  • PDF

마갈드레이트의 합성조건과 그 현탁액의 유동학적 특성 (Synthesis Conditions of Magaldrate and Rheological Characteristics of its Aqueous Suspensions)

  • 신화우;최광식
    • 약학회지
    • /
    • 제40권1호
    • /
    • pp.25-35
    • /
    • 1996
  • Magaldrate. an antiacid was synthesized by reacting magnesium oxide, aluminum sulfate, and dried aluminum hydroxide gel. The optimum synthesis conditions based on the yield of t he product were established by applying Box-Wilson experimental design. It was found that the optimum synthesis conditions of Magaldrate were as follows: Reaction temperature; 61~$85{\circ}C$, concentration of two reactants. Mgo and $Al(OH)_3$: 16~19.8%, molar concentration ratio of two reactants, [MgO]/[$Al(OH)_3$]; 4.2~5.0, temperature of washing water; 36~$41^{\circ}C$ and drying temperature of the product: 76~$80^{\circ}C$. Magaldrate was synthesized under the optimum synthesis conditions and identified by analyzing the chemical composition, and by differential scanning calorimetry and X-ray diffraction method. The Magaldrate sample synthesis under these conditions was used to prepare 15.6% Magaldrate original suspension which was utilized to make 13% Magaldrate suspension dispered in various concentrations of eight types of suspending agents. The acid-neutralizing capacity of 13% Magaldrate suspension dispersed in 0.25% suspending agents was examined by Rosset-Rice method. The maximum pH was reached within 1 minute in all suspension tested, and duration maintained between pH 3~5 was decreased in the order of Na alginate Na silicate(meta) Veegum HV pectin agar>Na>CMC>xanthan gum>bentonite. It was found that the hysteresis loop area was increased with temperature in the case of Riopan Plus and the addition of agar, whereas the area was decreased with temperature in the case of the addition of Na alginate and xanthan gum. 13% Magaldrate suspension tends to sediment by the addition of bentonite.

  • PDF

졸-겔 공정으로 합성된 코디어라이트를 이용하여 알루미나의 표면개질 (Surface Modification of Alumina Ceramic with Mg2Al4Si5O18 Glass by a Sol-Gel Process)

  • 최필규;추민철;배동식
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.48-52
    • /
    • 2014
  • The Mg-enriched magnesium aluminum silicate (MAS) glass is known for its higher mechanical strength and chemical resistance. Among such glasses, cordierite ($Mg_2Al_4Si_5O_{18}$) is well known to have a low thermal expansion and low melting point. Polycrystalline engineering ceramics such as alumina can be strengthened by a surface modification with low thermal expansion materials. The present study involves the synthesis of cordierite by a sol-gel process and investigates the effect of glass penetration on the surface of alumina. The cordierite powders were prepared from $Al(OC_3H_7)_3$, $Mg(OC_2H_5)_2$ and tetraethyl orthosilicate by hydrolysis and condensation reaction. The cordierite powders were characterized by X-ray diffraction (XRD, Rigaku), scanning electron microscope (SEM, JEOL: JSM-5610), energy dispersive spectroscopy (EDS, JEOL: JSM-5610), and universal testing machine (UTM, INSTRON). The X-ray diffraction patterns showed that the synthesized particles were ${\mu}$-cordierite calcined at $1100^{\circ}C$ for 1 h. The shape of synthesized cordierite was changed from ${\mu}$-cordierite to ${\alpha}$-cordierite with increasing calcination temperature. Synthesized cordierite was used for surface modification of alumina. Cordierite powders penetrated deeply into the alumina sample along grain boundaries with increasing temperature. The results of surface modification tests showed that the strength of the prepared alumina sample increased after surface modification. The strength of a surface modified with synthesized cordierite increased the most, to about 134.6MPa.