• Title/Summary/Keyword: Synthesis mechanism

검색결과 995건 처리시간 0.033초

기구 형태설계 자동화를 위한 컴포넌트 모듈 접근법에 관한 연구 (A Study on Component Modular Approach for Type Synthesis Automation of Mechanism)

  • 김봉주;윤호업;신중호;권순만;장세원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1270-1273
    • /
    • 2004
  • The mechanism design is synthesis of suitable mechanism which can be output motions about input motions. That has generally two steps which are the type synthesis and the dimensional synthesis. And required mechanism analysis step for confirming middle or final result. The type synthesis is definition of mechanism type which required aim and the dimensional synthesis is calculation of dimension about defined type mechanism. The type synthesis of mechanism is included qualitative design field which isn't defined systematic design method. especially, the most difficult step for mechanism design automation. In this paper proposed the component modular design method which is figured mechanism types automate with component modules using component modular approach. And develop CAD(Computer Aided Program) program for application.

  • PDF

평면 링크기구 자동 설계를 위한 스프링 연결 사이즈 가변 블록 모델 (Spring Connected Size-Variable Rigid Block Model for Automatic Synthesis of a Planar Linkage Mechanism)

  • 김범석;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.822-826
    • /
    • 2008
  • A linkage mechanism is a device to convert an input motion into a desired output motion. Traditional linkage mechanism designs are based on trial and error approaches so that size or shape changes of an original mechanism often result in improper results. In order to resolve these problems, an improved automatic mechanism synthesis method that determines the linkage type and dimensions by using an optimization method during the synthesis process has been proposed. For the synthesis, a planar linkage is modeled as a set of rigid blocks connected by zero-length translational springs with variable stiffness. In this study, the sizes of rigid blocks were also treated as design variables for more general linkage synthesis. The values of spring stiffness and the size of rigid block yielding a desired output motion at the end-effecter are found by using an optimization method.

  • PDF

근사 합성법을 이용한 5-SS 멀티 링크 현가장치의 기구학적 설계 (Approximate Synthesis of 5-SS Multi Link Suspension System)

  • 김선평;심재경;안병의;이언구
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2665-2671
    • /
    • 2000
  • Dimensional Synthesis, which is apart of kinematic synthesis, is to determine the dimensions of a mechanism of preconceived typer for a specified task and prescribed performance. In this paper, in an effort to provide designers with flexibility, a dimensional approximate synthesis method is presented for utilizing prescribed tolerance both the displacement and joint positions of a mechanism to be synthesized. For this, a constrained optimization problem is formulated with displacement parameters and joint positions as variables. The proposed method is applied to the synthesis of a 5-SS multi link suspension mechanism. The method discussed here, however, can be easily applied to any mechanism of which the kinematic constraint equations can be derived.

부싱 요소를 이용한 평면 4 절 기구의 강체 유도 기구 합성 (Mechanism synthesis of Planar Four-bar Linkage for rigid body guidance by bushing elements)

  • 유홍희;홍정렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.464-466
    • /
    • 2014
  • The mechanism synthesis methods, graphical, analytical and computer-aided technique have been proposed for selecting and scaling mechanical system. According to developing computation tools, mechanism could be synthesized much faster and more correct than previous analytical ways by improved techniques. In this paper, the improved synthesis method is proposed to solve body guidance synthesis problem. To perform the mechanism synthesis for body guidance, a planar linkage is modeled as a set of free three bushings located in design space. The values of bushing stiffness and x, y position of bushings yielding a desired functional requirement related to input motion are found by using an optimization technique.

  • PDF

메커니즘 합성을 통한 기계설계 (Mechanism Design Using a Mechanism Configuration Method)

  • 이장용
    • 대한기계학회논문집A
    • /
    • 제35권12호
    • /
    • pp.1613-1618
    • /
    • 2011
  • 기구 메커니즘의 작동해석과 관련하여 해석기하적 방법과 도식적 방법에 대한 연구가 있어왔다. 반면에 주어진 목적에 맞게끔 메커니즘을 구성하는 것에 대한 연구는 그리 많이 이루어지지 않았는데 일반 산업체 현장에서는 주로 과거에 활용된 메커니즘을 응용하는 방식으로 메커니즘 설계를 수행하여 왔다. 이런 방식은 설계초기 단계에서 가능한 모든 기구구성에 대해 숙고할 필요가 있는 메커니즘 설계자의 기구 선택범위를 제한하는 측면이 있다. 본 논문에서는 개념설계 단계에서 활용될 수 있는 기구 메커니즘 구성에 관한 새로운 방법론을 제시한다. 이를 활용하여 설계자는 창의적인 기구구성을 보다 효율적으로 수행할 수 있게 된다.

6 절기구 응용을 위한 3 위치 운동 생성용 4절 가구 합성을 위한 입력 크랭크의 합당해 영역 (Feasible Design Area of 4 Bar Input Crank for 3 Position Synthesis of Watt-II 6 Bar Mechanism)

  • 범진환
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.88-98
    • /
    • 1998
  • In many automatization applications, a rigid body is required to go forward and backward repeatedly through a set of given position/orientations precisely while a crank is rotated. Such a motion can be generated by 6 bar mechanism adding a dyad to a 4 bar mechanism. If this is the case for 3 position synthesis of the 4 bar mechanism, the feasible solution area for designing the 4 bar mechanism will be limited over the general solution area. This paper proposes a procedure to synthesize 4 bar mechanism to be used to generate the required motion. It is found that the only input crank of the 4 bar mechanism should be limited to satisfy the condition. And the feasible design area for the circle point/ center point of the input crank is identified so that design of the undesired mechanism could be avoided. The method is tested and the results are shown.

  • PDF

S-L-S 성장기구를 이용한 양질의 골드 나노선 합성 (Synthesis of Au Nanowires Using S-L-S Mechanism)

  • 노임준;김성현;신백균;조진우
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.922-925
    • /
    • 2012
  • Single crystalline Au nanowires were successfully synthesized in a tube-type furnace. The Au nanowires were grown by vapor phase synthesis technique using solid-liquid-solid (SLS) mechanism on substrates of corning glass and Si wafer. Prior to Au nanowire synthesis, Au thin film served as both catalyst and source for Au nanowire was prepared by sputtering process. Average length of the grown Au nanowires was approximately 1 ${\mu}m$ on both the corning glass and Si wafer substrates, while the diameter and the density of which were dependent on the thickness of the Au thin film. To induce a super-saturated states for the Au particle catalyst and Au molecules during the Au nanowire synthesis, thickness of the Au catalyst thin film was fixed to 10 nm or 20 nm. Additionally, synthesis of the Au nanowires was carried out without introducing carrier gas in the tube furnace, and synthesis temperature was varied to investigate the temperature effect on the resulting Au nanowire characteristics.

운동의 허용공차를 이용한 RSSS-SC 현장장치의 기구학적 설계 (Kinematic Synthesis and Analysis of RSS-SC Suspension System Using Acceptable Tolerances of Motion)

  • 김선평;심재경
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2672-2679
    • /
    • 2000
  • In synthesizing and RSSS-SC mechanism that is the kinematic model of the McPherson strut suspension system in automobiles, the design equations for R-S, S-S and S-C dyads should be solved separately for a given set of prescribed positions. The number of prescribed positions that the RSSS-SC mechanism can be synthesized is up to three because of the S-C dyad. This limitation may cause unsatisfactory results in synthesized joint positions. This paper presents a kinematic synthesis method to place the joints of an RSSS-SC mechanism in desired boundaries by varying the prescribed positions of the mechanism within acceptable tolerances. The sensitivity analysis of the joint positions is used determine which displacement parameter should be altered to fulfill this task.

디메틸에테르의 직접반응 속도론 (Kinetics on Direct Synthesis Dimethyl Ether)

  • 조원일;최창우;백영순;노경호
    • 한국가스학회:학술대회논문집
    • /
    • 한국가스학회 2005년도 추계학술발표회 논문집
    • /
    • pp.83-87
    • /
    • 2005
  • The kinetics of the direct synthesis of DME was studied under different conditions over a temperature range of $220\~280^{\circ}C$, syngas ratio $1.2\~ 3.0$ All experiment were carried out over hybrid catalyst, composed to a methanol synthesis catalyst (Cu/ZnO/$Al_2O_3$) and a dehydration Catalyst ($\gamma$-Al_2O_3$) The observed reaction rate qualitatively follows a Langmiur-Hinshellwood type of reaction mechanism. Such a mechanism is considered with three reaction, methanol synthesis, methanol dehydration and water gas shift reaction. From a surface reaction with dissociative adsorption of hydrogen, methanol and water, individual reaction rate was determined

  • PDF

Performance Evaluation of Hinge Driving Separation Nut-type Holding and Releasing Mechanism Triggered by Nichrome Burn Wire

  • LEE, Myeong-Jae;LEE, Yong-Keun;OH, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.602-613
    • /
    • 2015
  • As one of the mission payloads to be verified through the cube satellite mission of Cube Laboratory for Space Technology Experimental Project (STEP Cube Lab), we developed a hinge driving separation nut-type holding and releasing mechanism. The mechanism offers advantages, such as a large holding capacity and negligible induced shock, although its activation principle is based on a nylon cable cutting mechanism triggered by a nichrome burn wire generally used for cube satellite applications for the purpose of holding and releasing onboard appendages owing to its simplicity and low cost. The basic characteristics of the mechanism have been measured through a release function test, static load test under qualification temperature limits, and shock measurement test. In addition, the structural safety and operational functionality of the mechanism module under launch and on-orbit environments have been successfully demonstrated through a vibration test and thermal vacuum test.