• Title/Summary/Keyword: Synoviolin

Search Result 2, Processing Time 0.019 seconds

THE ANALYSIS OF SYNOVIAL FLUID BY PROTEOMICS FROM TMD (악관절환자에서 Synovial fluid에 대한 단백질체 분석에 관한 연구)

  • Byun, Eun-Sun;Kim, Tae-Woo;Kim, Sang-Gyun;Park, Tae-Il;Park, Jun-Woo;Yun, Pil-Young;Kim, Young-Kyun;Chae, Chang-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.113-118
    • /
    • 2008
  • Temporomandibular joint disorder (TMD) can induce severe pain but, its pathogenic mechanisms remain poorly understood. In this study, we analyzed proteomes of human synovial fluid in the superior joint space in the patients with TMD, which is obtained during the treatment arthrocentesis. We've got this result that one of the spots was consistently down-regulated in synovial fluid of patients with TMD from analysis of protein pattern. Its molecular weight was estimated to be 33 kDa. Synoviolin was identified in our proteomics analysis of LC/MS/MS. This protein was recently reported as one of the proteins that might affect rheumatoid arthritis (RA). Synoviolin that might be associated with RA was detected in synovial fluid of patients with TMD. We can conclude that synoviolin might be involved not only in the pathogenesis of RA but also in TMD. In result, synoviolin might be involved in the pathogenesis of TMD and can be candidates as new therapeutic targets of TMD or early detection biomarkers.

Ubiquitin E3 ligases controlling p53 stability

  • Lee, Seong-Won;Seong, Min-Woo;Jeon, Young-Joo;Chung, Chin-Ha
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.173-182
    • /
    • 2012
  • The p53 protein plays a pivotal role in tumor suppression. The cellular level of p53 is normally kept low by proteasome-mediated degradation, allowing cell cycle progression and cell proliferation. Under stress conditions, such as DNA damage, p53 is stabilized and activated through various post-translational modifications of itself as well as of its regulatory proteins for induction of the downstream genes responsible for cell cycle arrest, DNA repair, and apoptosis. Therefore, the level of p53 should be tightly regulated for normal cell growth and for prevention of the accumulation of mutations in DNA under stress conditions, which otherwise would lead to tumorigenesis. Since the discovery of Mdm2, a critical ubiquitin E3 ligase that destabilizes p53 in mammalian cells, nearly 20 different E3 ligases have been identified and shown to function in the control of stability, nuclear export, translocation to chromatin or nuclear foci, and oligomerization of p53. So far, a large number of excellent reviews have been published on the control of p53 function in various aspects. Therefore, this review will focus only on mammalian ubiquitin E3 ligases that mediate proteasome-dependent degradation of p53.