• Title/Summary/Keyword: Syngas utilization

Search Result 21, Processing Time 0.024 seconds

Valorizing Cattle Manure to Syngas via Catalytic Pyrolysis with CO2 (이산화탄소-촉매 열분해 활용 우분 유래 합성가스 증대 연구)

  • Lee, Dong-Jun;Jung, Jong-Min;Kim, Jung Kon;Lee, Dong-Hyun;Kim, Hyunjong;Park, Young-Kwon;Kwon, Eilhann E.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.141-150
    • /
    • 2022
  • To abate the environmental burden derived from the massive generation of cattle manure (CM), pyrolysis of CM was suggested as one of the methods for manure treatment. In respect of carbon utilization, pyrolysis has an advantage in that it can produce usable carbon-based chemicals. This study was conducted to investigate a syngas production from pyrolysis of CM in CO2 condition. In addition, mechanistic functionality of CO2 in CM pyrolysis was investigated. It was found that the formation of CO was enhanced at ≥ 600 ℃ in CO2 environment, which was attribute to the homogeneous reactions between CO2 and volatile matters (VMs). To expedite reaction kinetics for syngas production during CM pyrolysis, Catalytic pyrolysis was carried out using Co/SiO2 as a catalyst. The synergistic effects of CO2 and catalyst accelerate the formation of H2 and CO at entire temperature range. Thus, this result offers that CO2 could be a viable option for syngas production with the mitigation of greenhouse gas.

A Study on Tar Removal in Syngas Produced from Woodchip Gasification Using Oxidation Catalyst and Utilization of Syngas by Co-combustion (산화촉매를 이용한 우드칩 가스화 합성가스 내 타르 제거 및 합성가스 혼합연소 이용기술 연구)

  • Yoon, SangJun;Kim, YongKu;Lee, JaeGoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.175.1-175.1
    • /
    • 2011
  • 우드칩을 포함하는 화석연료대비 발열량이 낮은 바이오매스를 가스화를 통하여 활용하는 경우 타르 및 수트를 포함하는 저열량의 합성가스가 생성된다. 이러한 합성가스를 엔진을 통한 발전, 스팀, 수소 및 화학제품 생산으로 활용하기 위해서는 고효율의 타르 정제 및 제거가 필수적이다. 특히 착화가 어렵고 연소온도 및 연소율이 낮으며, 화염구간이 좁은 저열량의 합성가스를 이용하여 스팀을 생산하기 위해서는 많은 문제점으로 인하여 기술 개발이 필요하다. 본 연구에서는 하향류식 가스화기를 이용하여 우드칩을 연료로 합성가스를 제조하였으며, 합성가스에 포함되어 있는 타르 및 수트와 같은 미반응 물질을 제거할 수 있는 집진, 세정장치를 설계 및 제작하였다. 특히 고효율 타르의 제거를 위하여 두 종류의 산화촉매를 이용한 합성가스 내 타르의 제거 연구를 수행하였다. Ru 촉매를 이용하는 경우 합성가스 내 타르의 농도를 100ppb 정도까지 저감이 가능하였다. 정제된 합성가스는 유류 혼소 버너를 통하여 보일러 연소실에서 혼합연소되어 30만kcal/h의 열을 공급함으로써 스팀을 생산 하였으며, 생성된 스팀은 블록 건조 시설에서 이용하였다.

  • PDF

The study on energy utilization through rice husks gasification (왕겨 열분해 가스를 이용한 에너지활용 적용특성 연구)

  • Park, Soonam;Yoon, Youngsic;Kim, Narang;Gu, Jaehoi;Sung, Hojin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.112.2-112.2
    • /
    • 2011
  • 미곡종합처리장에서 발생되는 농업부산물인 왕겨는 대부분 퇴비의 재료로 활용되고 있으며, 수익성이 없는 것으로 알려져 있다. 근래에 화석자원의 고갈이 진행되면서, 왕겨, 볏짚을 포함한 농업부산물은 화석연료와 달리 재생이 가능하고 지속 가능한 자원으로 각광을 받고 있다. 바이오매스를 이용하는 신재생에너지 기술로는 생물학적, 열화학적, 물리적 변환 기술 등이 있다. 그중 열화학적 변환 기술은 반응시간이 짧고, 단위부피당 처리량이 높으며 공정상의 폐기물이 적은 장점을 지니고 있어 왕겨의 에너지 활용에 효율적인 기술로 알려져 있다. 왕겨의 열분해 가스화는 CO, $H_2$, $CO_2$, 및 $CH_4$ 가스가 주성분인 합성가스로 전환되는 것을 말하며, 생산된 합성가스는 가스엔진의 발전 연료로 사용될 수 있다. 본 연구에서는 농업부산물인 왕겨를 이용한 열분해 가스화기에서 발생된 합성가스를 정제한 후, 20kW급 가스엔진을 적용하여 합성가스 에너지 활용특성에 관하여 고찰하였다. 그 결과 왕겨의 열분해/가스화반응에 의해 발생된 합성가스를 가스엔진으로 안정적으로 공급하였으며,16kw의 전력이 생산되는 것으로 나타났다.

  • PDF

Waste-to-Energy and Landfill Gas Utilization Potential in Indonesia

  • Yurnaidi, Zulfikar
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.313-320
    • /
    • 2009
  • Indonesian Ministry of Environment estimates that each year 170 cities and regencies in Indonesia produce 45,764,354.30 $m^3$ or approximately 11,441,091.08 ton of solid waste. Unfortunately, unsustainable management system has created a severe waste problem, hazardous to health and environment. This paper deals with the problem and offers some solutions. They are 3R (Reduce Reuse and Recycle), waste-to-energy concept and landfill gas (LFG) utilization. While 3R policy has been adopted by the government, the remaining two technologies are still dormant. Thus the paper provides a complete yet compact analysis of technology, economics, and environment aspect of waste-to-energy and LFG. Given the facts of waste production and management in Indonesia, the purpose is to encourage Government of Indonesia and other stake holders (including international community) to explore and exploit this potential. Potential of reducing waste negative externality while receiving extra revenue. Two bird with a stone.

  • PDF

The Effect of ZnO Content on the Performance of Spray-dried Zn-based Desulfurization Sorbent for H2 Cleanup (황화수소 정제용 아연계 분무건조 탈황제의 활성성분 함량 변경에 따른 물성 및 반응 특성)

  • Baek, Jeom In;Eom, Tae Hyoung;Lee, Joong Beom;Jegarl, Seong;Ryu, Chong Kul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.482-490
    • /
    • 2014
  • Gaseous sulfur compound such as $H_2S$ or COS in coal- or biomass-derived hot syngas can be purified by solid sorbents at high temperatures. In this study, we investigated the physical properties and reactivity of solid regenerable desulfurization sorbents with 37.2, 41.9, and 46.5wt% ZnO to look into the ZnO content effect. The sorbents were produced by spray-drying method to apply to a fluidized-bed process. Sulfidation and regeneration reaction were carried out using a thermogravimetric analyzer. Sorbent prepared with 46.5wt% ZnO had physical properties suitable for a fluidized-bed process applications such as spherical shape, sufficient mechanical strength and density, high porosity and surface area. It showed high sulfur sorption capacity of 10.4wt% (ZnO utilization of 57%) at reaction temperatures of 500 and $650^{\circ}C$ for sulfidation and regeneration, respectively. However, the sulfur sorption capacity and ZnO utilization were significantly reduced and dimple shape appeared when the ZnO content decreased to 37.2 and 41.9wt%. Sulfur sorption capacity and regenerability were improved as reaction temperature increased within the experimental temperatures used in this work. The reaction temperature zones of $1500{\sim}550^{\circ}C$ and $650{\sim}700^{\circ}C$ are recommended for sulfidation and regeneration, respectively, to lead best reaction performances of the ZnO-based spray-dried sorbents developed in this work.

Performance Analysis of Polygeneration Process (폴리제너레이션 성능 모사 연구)

  • LEE, SIHWANG;DAT, NGUYEN VO;LEE, GUNHEE;JUNG, MINYOUNG;JEON, RAKYOUNG;OH, MIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.352-360
    • /
    • 2017
  • Polygeneration process is widely used to pursuit high efficiency by sharing electricity, utility, refrigeration and the utilization of product chemicals. In this paper, performance analysis of the 450 MW Class polygeneration process was conducted with various syngas generated from coal and biomass gasifier. WGSR and PSA process were employed for hydrogen production and separation. Process modeling and dynamic simulation was carried out, and the results were compared with NETL report. Net power of the polygeneration process was 439 MW considering power consumption. More than 90% of CO was converted at WGSR and the hydrogen purity of PSA was more than 99.99%.

Experimental study on the characteristics of Vacuum residue gasification in an entrained-flow gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.171-184
    • /
    • 2002
  • Approx. 200,000 bpd vacuum residue oil is produced from oil refineries in Korea. These are supplying to use asphalt, high sulfur fuel oil, and upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435-500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER(Korea Institute of Energy Research) are studing on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature : 1,100~1,25$0^{\circ}C$, reaction pressure : 1~6kg/$\textrm{cm}^2$G, oxygen/V.R ratio : 0.8~0.9 and steam/V.R ratio : 0.4-0.5. Experimental results show the syngas composition(CO+H$_2$) : 85~93%, syngas flow rate : 50~110Mm$^3$/hr, heating value : 2,300~3,000 ㎉/Nm$^3$, carbon conversion : 65~92, cold gas efficiency : 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

  • PDF

Experimental Study on the Characteristics of Vacuum Residue Gasification in an Entrained-flow Gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum Residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • Approx. 200.000 bpd vacuum residue oil is produced from oil refineries in Korea, and is supplied to use asphalt, high sulfur fuel oil and for upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however its high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435~500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER (Korea Institute of Energy Research) are studying on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature: 1.100~l,25$0^{\circ}C$, reaction pressure: 1~6 kg/$\textrm{cm}^2$G, oxygen/V.R ratio: 0.8~0.9 and steam/V.R ratio: 0.4~0.5. Experimental results show the syngas composition (CO+H$_2$): 85~93%, syngas flow rate: 50~l10 Nm$^3$/hr, heating value: 2,300~3,000 k㎈/Nm$^3$, carbon conversion: 65~92, cold gas efficiency: 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

Steam Gasification Characteristics of Oil Sand Coke in a Lab-Scale Fixed Bed Gasifier (실험실 규모의 고정층 가스화기에서 오일샌드 코크스의 수증기 가스화 특성)

  • Yoon, Sang Jun;Choi, Young-Chan;Lee, See-Hoon;Lee, Jae Goo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.62-66
    • /
    • 2009
  • Utilization and interest of unconventional fuel and process residue such as oil sand and its residue, oil sand coke, have been increased because of the continuous rise of fuel price and conventional fuel availability. In this study, the gasification of oil sand coke produced from coking process of oil sand was performed to utilize as an energy resource using lab-scale fixed bed gasification system. The combustion characteristics of oil sand bitumen and oil sand coke were investigated by using TGA and lab-scale gasification system was applied to reveal the characteristics of produced syngas composition with oxygen/fuel ratio, temperature and steam injection rate. Oil sand coke shows a high carbon content, heating value and sulfur content and low ash content and reactivity. In case of oil sand coke gasification, generally with increasing temperature, the amount of steam introduced and decreasing oxygen injection rate, $H_2$ content in product gas increased while the $CO_2$ content decreased. The calorific value of syngas shows about $2100kcal/Nm^3$ and this result indicates that the oil sand coke can be used as a resource of hydrogen and fuel.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.