• Title/Summary/Keyword: Syngas composition

Search Result 61, Processing Time 0.026 seconds

Studies on syngas production and gas engine generation of soild waste gasification in the fixed bed gasification melting furnace (고정층 가스화 용융로에서의 고상폐기물 가스화 합성가스 생산 및 가스엔진 발전 연구)

  • Gu, Jae-Hoi;Kim, Su-Hyun;Yoo, Young-Don;Yun, Yong-Seung;Lee, Hyup-Hee;Nam, Sang-Ik;Yoon, Jae-Kwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.717-720
    • /
    • 2007
  • The 3 ton/day-scale pilot plant consists of compressor, feed channel, fixed bed type gasification & melting furnace, quench scrubber, demister, flare stack and gas engine. Syngas composition of gasification using the 35.50(waste I), 4.34%(wasteII) moisture-containing solid waste showed waste I CO 25-35%, 20-40% hydrogen, waste II 25-35%, 20-30% hydrogen. Gasification melting furnace was operated $1,500{\sim}1,600^{\cdot}C$. Gas engine was generated $35{\sim}40$ kW as waste gasification syngas.

  • PDF

Process Modeling of IGCC Power Plant using Open-Equation Modeling Framework (개방형 수식모델링 툴을 이용한 IGCC 플랜트 공정모사)

  • Kim, Simoon;Joo, Yongjin;Kim, Miyeong;Lee, Joongwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.113.1-113.1
    • /
    • 2010
  • IGCC(Integrated Coal Gasification and Combined Cycle) plants can be among the most advanced and environmental systems for electric energy generation from various feed stocks and is becoming more and more popular in new power generation fields. In this work, the performance of IGCC plants employing Shell gasification technology and a GE 7FB gas turbine engine was simulated using IPSEpro open-equation modeling environment for different operating conditions. Performance analyses and comparisons of all operating cases were performed based on the design cases. Discussions were focused on gas composition, syngas production rate and overall performance. The validation of key steady-state performance values calculated from the process models were compared with values from the provided heat and material balances for Shell coal gasification technology. The key values included in the validation included the inlet coal flow rate; the mass flow rate, heating value, and composition of major gas species (CO, H2, CH4, H2O, CO2, H2S, N2, Ar) for the syngas exiting the gasifier island; and the HP and MP steam flows exiting the gasifier island.

  • PDF

Gasification Characteristics of Biomass and RPF in a 5ton/day Fixed Bed Gasifier (5톤/일 고정층 가스화기를 이용한 바이오매스, RPF 가스화 특성 연구)

  • Yoon, Sang-Jun;Choi, Young-Chan;Lee, See-Hoon;Kim, Jae-Ho;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.75-78
    • /
    • 2006
  • With the increasing environmental consideration and stricter regulations waste gasification is considered to be more attractive technology than conventional incineration for energy recovery as well as material recycling. The experiment for combustible waste was performed In the fixed bed gasifier to investigate the gasification behavior with the operating conditions in a 5ton/day fixed bed gasifier The experiments of operation with 10-50 hours were carried out to determine the effects of bed temperature and oxygen/waste rat io on the syngas composition, calorific value and carbon conversion. The calorific values of the produced syngas decreased with an Increase of bed temperature because combust ion reaet ion more act ively happened. The syngas composition of wood waste gasification is CO: 34.4%, $H_2: 10.7%,\;CH_4: 6.0%,\;CO_2: 48.9%$ and that of RPF is CO: 33.9%, $H_2: 26.1%,\;CH_4: 10.7%,\;CO_2: 29.2%$. The average calorific values of produced gas were about $1,933kcal/Nm^3,\;2,863kcal/Nm^3$, respectively

  • PDF

A Study on Evaluating the Selection of Low Rank Coal Gasifier (저급탄 가스화기 선정 평가 연구)

  • KIM, CHEOLOONG;LIM, HO;KIM, RYANGGYOON;SONG, JUHUN;JEON, CHUNGHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.567-580
    • /
    • 2015
  • In order to select an optimum gasifier for specific low rank coal, evaluation elements were studied by analyzing characteristics of low rank coal compared with those of high rank coal and the effects of each gasifier type in accordance with the characteristics. And syngas composition calculation model was made on the basis of thermochemical equilibrium to quantify some of the evaluation elements. And then the suitable gasifier was selected for a kind of Indonesian low rank coal through this syngas composition calculation model and the evaluation elements of selecting gasifier.

Water Gas Shift Reaction Research of the Synthesis Gas for a Hydrogen Yield Increase (수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구)

  • Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Automobile Shredder Residue (ASR) is very appropriate in a gasification melting system. Gasification melting system, because of high reaction temperature over than $1,350^{\circ}C$, can reduce harmful materials. To use the gasification processes for hydrogen production, the high concentration of CO in syngas must be converted into hydrogen gas by using water gas shift reaction. In this study, the characteristics of shift reaction of the high temperature catalyst (KATALCO 71-5M) and the low temperature catalyst (KATALCO 83-3X) in the fixed - bed reactor has been determined by using simulation gas which is equal with the syngas composition of gasification melting process. The carbon monoxide composition has been decreased as the WGS reaction temperature has increased. And the occurrence quantity of the hydrogen and the carbon dioxide increased. When using the high temperature catalyst, the carbon monoxide conversion ratio ($1-CO_{out}/CO_{in}$) rose up to 95.8 from 55.6. Compared with average conversion ratio from the identical synthesis gas composition, the low temperature catalyst was better than the high temperature catalyst.

  • PDF

A Effect of Reaction Conditions on Syngas Yield for the Preparation of Syngas from Landfill Gas (매립지가스(LFG)로부터 합성가스 제조시 반응조건에 따른 수율에 미치는 연구)

  • CHO, WOOKSANG;CHOI, KEONGDON;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.477-483
    • /
    • 2015
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas yield on the amount of LFG components over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Results were obtained through the methan reforming experiments at the temperature of $900^{\circ}C$ and GHSV of 8,800. The results were as following; it has generally shown that syngas yield increase with the increase of oxygen and steam amounts and then decrease. Highly methane conversion of above 98% and syngas yield of approximately 60% were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 450ml/min of steam, respectively, under reactor pressure of 1 bar for 200 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.

Syngas Concentration and Efficiency in Heavy Residual Oil Gasification with 1 Ton/Day-Class Entrained-Bed Reactor (1톤/일급 분류층 가스화기에서 중질잔사유의 가스화 합성가스 조성 및 효율 변화)

  • 주지선;나혜령;윤용승
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2003
  • With the 1 ton/day-class entrained-bed gasification system, heavy residual oil from local refinery was gasified at the operating conditions of 1,000~1,20$0^{\circ}C$ and 3 $kg_f$/$\textrm{cm}^2$ in order to determine the variation of syngas composition, carbon conversion, and cold gas efficiency. Produced syngas consists of mainly CO, H$_2$, $CO_2$, and the methane concentrations. Results yielded a maximum syngas composition of 45% H$_2$ and 26%, CO at the 31 kg/hr feeding condition. The maximum carbon conversion and cold gas efficiency were 87% and 68%, respectively at the feeding conditions of 20 kg/hr and oxygen/feed ratio of 1.2. When oxygen feeding amount that is one of the most important operating parameter in gasification was increased, concentration of hydrogen in the syngas is greatly increased comparing to the concentration of CO and $CO_2$. The temperature exhibited about 11$0^{\circ}C$ raise while oxygen/feed ratio changed from 0.6 to 1.2. Methane concentration showed enhanced dropping rate with increase in gasifier temperature and the useful relationship between the gasifier temperature and methane concentration existed such that it can be employed as an indirect measure of inside gasifier temperature.

Decomposition of primary tar influenced by char particle types and reaction time during biomass gasification (바이오매스 가스화시 촤 입자 종류 및 반응시간에 따른 일차타르의 분해 특성)

  • Park, Jinje;Lee, Yongwoon;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.33-36
    • /
    • 2014
  • Gasification of biomass produces syngas containing CO, $H_2$ and/or $CH_4$, which can then be converted into energy or value-added fuels. One of key issues for efficient gasification is to minimize tar concentration in the syngas for use in a final conversion device such as gas engine. This study investigated the decomposition of primary tar by catalytic cracking using char as catalyst, of which the feature can be integrated into a fixed bed gasifier design. The pyrolysis vapor containing tar from pyrolysis of wood at $500^{\circ}C$ was passed through a reactor filled with or without char at $800^{\circ}C$ for a residence time of 1, 3 or 5 sec. Then, the condensable vapor (water and tar) and gases were analyzed for the yields and elemental composition. Four types of char particles with different microscopic surface area and pore size distribution: wood, paddy straw, palm kernel shell and activated carbon. The results were analyzed for the mass and carbon yields of tar and the composition of product gases to conclude the effects of char types and residence time.

  • PDF

A Study on the Water Gas Shift Reaction of RPF Syngas (RPF(Refuse plastic fuel) 합성가스의 수성가스 전환 반응 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.12-18
    • /
    • 2021
  • The water-gas shift reaction is the subsequent step using steam for hydrogen enrichment and H2/CO ratio-controlled syngas from gasification. In this study, a water-gas shift reaction was performed using syngas from an RPF gasification system. The water-gas shift using a catalyst was performed in a laboratory-scale tube reactor with a high temperature shift (HTS) and a low temperature shift (LTS). The effects of the reaction temperature, steam/carbon ratio, and flow rate on H2 production and CO conversion were investigated. The operating temperature was 250-400℃ for the HTS system and 190-220℃ for the LTS system. Steam/carbon ratios were between 1.5 and 3.5, and the composition of reactant was CO : 40 vol%, H2 : 25 vol%, and CO2 : 25 vol%. The CO conversion and H2 production increased as the reaction temperature and steam/carbon ratio increased. The CO conversion and H2 production decreased as the flow rate increased due to reduced retention time in the catalyst bed.

RDF Gasification Using a Pilot-Scale Two-Stage Gasification System (파일럿 규모 2단 가스화 시스템 공정을 이용한 RDF 가스화)

  • Park, In-Hee;Park, Young-Kwon;Lee, Young-Man;Bae, Wookeun;Kwak, Yeon-Ho;Cheon, Kyeong-Ho;Park, Sung Hoon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.286-290
    • /
    • 2011
  • Syngas was produced out of pellet refuse derived fuel (RDF) produced from an RDF production facility of W city, Korea. A two-stage gasification system was developed to use the RDF char as an auxiliary heat source for gasification reaction. The composition and heating value of syngas as well as the heating value of residual product (char) were measured at a different residence time to investigate the optimal operating condition of the two-stage gasification system for syngas production. The optimal char residence time to minimize the energy cost due to an external heat source supply was also deduced.