• Title/Summary/Keyword: Synergistic inhibition

Search Result 243, Processing Time 0.023 seconds

A Study on Synergisitic Effect of Chitosan and Sorbic Acid on Growth Inhibition of Escherichia coli O517:H7 and Staphylococcus aureus (E. coli O517:H7 과 Staphylococcus aureus의 증식억제에 대한 키토산과 소르빈산의 상승효과에 관한 연구)

  • 조성범;이용욱;김정현
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.112-120
    • /
    • 1998
  • This study was performed to investigate the synergistic effect of chitosan and sorbic acid as a new food preservative. So it was performed to investigate inhibitory effect on growh of E. coli 0157:H7, gram negative pathogenic food borne disease bacteria and of S. aureus, gram positive food borne disease bacteria in chitosan, sorbic acid and combination of chitosan and sorbic acid. Minimun Inhibitory Concentration (MIC) of chitosan in E. coli 0157:H7 was 500 ppm at pH 5.0, 250 ppm at pH 5.5, 500 ppm at pH 6.0, and 2000 ppm at pH 6.5, while in Staph. aureus 31.25 ppm at pH 5.0 and 62. 5 ppm at more than pH 5.5. also, MIC of sorbic acid in E. coli 0157:H7 was 500 ppm at pH 5.0, 1500 ppm at pH 5.5, and 2000 ppm at more than pH 6.0, while in Staph. aureus 1500 ppm at pH 5.0 and more than 2000 ppm at more than pH 5.5. Due to the effect of pH in E. coli 0157:H7, MIC of combined chitosan and sorbic acid was 500 ppm of chitosan with 500 ppm of sorbic acid at pH 6.5, but 250 ppm of chitosan with 31.3 ppm of sorbic acid at pH 5.0. In Staph. aureus, there was great effect of chitosan, but neither effect of pH nor sorbic acid. When E. coli 0157:H7 were treated with 500 ppm of chitosan with 500 ppm of sorbic acid and 250 ppm of chitosan with 250 ppm of sorbic acid at pH 6.5, they were inhibited. But, they were increased at the initial concentration of bacteria at 1000 ppm of chitosan in 18 hours, at 500 ppm of chitosan in 36 hours. There was no effect of growth inhibition with sorbic acid but great effect with chitosan on Staph. aureus. The correl~tions between MICs of chitosan and sorbic acid in E. coli 0157:H7 accoding to pH were higher than those in Staph. aureus. R values in E. coli 0157:H7 were 0.95 (p<0.01), 0.99 (p<0.01), 0.97 (p<0.01), and 0.99 (p<0.01) at pH 6.5, 6.0, 5.5, and 5.0 respectively. The synergistic effect of chitosan and sorbic acid in E. coli 0157:H7 could be confirmed from the result of this experiment. Therefore, it was expected that the food preservation would increase or maintain by using sorble acid together with chitosan, natural food additive that did no harm to human body.

  • PDF

Toxic Effects of Binary Mixtures of Heavy Metals on the Growth and P Removal Efficiencies of Alcaligenes sp. (Alcaligenes sp.의 생장과 인 제거에 미치는 이종 중금속 혼합의 독성 효과)

  • Kim, Deok Hyun;Yoo, Jin;Chung, Keun Yook
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • BACKGROUND: This study was initiated to quantitatively evaluate the effects of five heavy metals on the growth and P removal efficiencies of Alcaligenes sp., known as the Phosphorus Accumulating Organisms (PAOs). It was cultivated in the batch system with five heavy metals, such as Cd, Cu, Zn, Pb and Ni, added in single and binary mixtures, respectively.METHODS AND RESULTS: IC50 (half of inhibition concentration of bacterial growth) and EC50 (half of effective concentration of phosphorus removal Efficiencies) were used to quantitatively evaluate the effects of heavy metals on the growth and phosphorus removal Efficiencies of Alcaligenes sp. In addition, Additive Index Value (A.I.V.) method was used to evaluate the interactive effects between Alcaligenes sp. and heavy metals. As a result, as the five heavy metals were singly added to Alcaligenes sp., the greatest inhibitory effects on the growth and P removal efficiencies of each bacteria was observed in the cadmium (Cd). In the binary mixture treatments of heavy metals, the treatments of lowest IC50 and EC50 were the Cd + Cu treatment. Based on the IC50 and EC50 of the binary mixtures of heavy metals treatments, most interactive effects between the heavy metals were found to be antagonistic.CONCLUSION: Based on the results obtained from this study, it appears that they could provide the basic information about the toxic effects of the respective treatments of single and binary mixtures of heavy metals on the growth and P removal efficiencies of Alcaligenes sp. through further study about the characterization of functional proteins involved in toxic effects of heavy metals.

Cholesterol Improvement Synergistic Effects of Fermented Soybean Grits Caused by Added with Mung Bean in vitro (녹두 첨가로 인한 탈지대두 Grits(Defatted Soybean Grits) 발효물의 in vitro 상에서의 콜레스테롤 개선능 상승효과)

  • Lee, Sung-Gyu;Kim, Hyun-Jeong;Yu, Mi-Hee;Lee, Eun-Ju;Lee, Sam-Pin;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.7
    • /
    • pp.947-952
    • /
    • 2010
  • This study was performed to investigate cholesterol improvement of fermented defatted soybean grits (FD) and FD added with 2.5, 5, 10% mung bean (FDM). The FD and FDM were prepared by the solid state fermentation using Bacillus subtilis NUC1 at $40^{\circ}C$ for 24 hr. More than 70% cholesterol adsorption of FD and FDM groups was shown. Particularly, FDM added with 2.5% mung bean (2.5% FDM) showed highest cholesterol adsorption by 90% among FD and FDM groups. 2.5% FDM showed 42% inhibition effect on HMG-CoA reductase, and significantly decreased the intracellular cholesterol contents in HepG2 cells. Apolipoprotein AI, CIII improvement effects of FD and FDM group in HepG2 cells showed most effects in the 2.5% FDM. The results suggest that FDM added with 2.5% mung bean may be beneficial to the prevention of hypercholesterol.

Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on TRAIL-mediated Apoptosis in Human Bladder Cancer Cells (인체 방광암세포에서 histone deacetylase 억제제인 sodium butyrate이 TRAIL에 의한 apoptosis 유도에 미치는 영향)

  • Han, Min-Ho;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.431-438
    • /
    • 2016
  • The tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer agent due to its unique ability to induce cancer cell death having only negligible effects on normal cells. However, many cancer cells tend to be resistant to TRAIL. In this study, we investigated the effects and molecular mechanisms of sodium butyrate (SB), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in 5637 human bladder cancer cells. Our results indicated that co-treatment with SB and TRAIL significantly increased the apoptosis induction, compared with treatment with either agent alone. Co-treatment with SB and TRAIL effectively increased the cell-surface expression of death receptor (DR) 5, but not DR4, which was associated with the inhibition of cellular Fas-associated death domain (FADD)-like interleukin-1β-converting enzyme (FLICE) inhibitory protein (c-FLIP). Furthermore, the activation of caspases (caspase-3, -8 and -9) and degradation of poly(ADP-ribose) were markedly increased in 5637 cells co-treated with SB and TRAIL; however, the synergistic effect was perfectly attenuated by caspase inhibitors. We also found that combined treatment with SB and TRAIL effectively induced the expression of pro-apoptotic Bax, cytosolic cytochrome c and cleave Bid to truncated Bid (tBid), along with down-regulation of anti-apoptotic Bcl-xL expression. These results collectively suggest that a combined regimen of SB plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating TRAIL-resistant bladder cancer cells.

Effect of Agrimonia Pilosa Ledeb. Extract on the Growth of Food-Borne Pathogens (선학초 추출물이 식중독 유발세균의 증식에 미치는 영향)

  • Bae Ji-Hyun;Sohn Mee-Aae
    • Journal of Nutrition and Health
    • /
    • v.38 no.2
    • /
    • pp.112-116
    • /
    • 2005
  • This study was performed to investigate the antimicrobial effect of the Agrimonia pilosa Ledeb. extracts against food-borne pathogens. First, the Agrimonia pilosa Ledeb. was extracted with methanol at room temperatures, and fractionation of the methanol extracts from Agrimonia pilosa Ledeb. was carried out by using petroleum ether, chloroform, and ethyl acetate, and methanol respectively. The antimicrobial activity of the Agrimonia pilosa Ledeb. extracts was determined using a paper disc method against food-borne pathogens and food spoilage bacteria. The petroleum ether extracts of Agrimonia pilosa Ledeb. showed the highest antimicrobial activity against Pseudomonas aeruginosa. The synergistic effect has been found in combined extracts of Agrimonia pilosa Ledeb. and Perillae folium as compared to each extracts alone. Finally, the growth inhibition curve was determined using ethyl acetate extracts of Agrimonia pilosa Ledeb. against Bacillus Cereus and Salmonella Enteritidis. The petroleum ether extract of Agrimonia pilosa Ledeb. showed strong antimicrobial activity against Bacillus Cereus at the concentration of 4,000 ppm. The 4,000 ppm of petroleum ether extract from Agrimonia pilosa Ledeb. retarded the growth of Bacillus Cereus more than 24 hours and Salmonella Enteritidis up to 36 hours. The petroleum ether extracts of Agrimonia pilosa Ledeb. has been shown the antimicrobial effect against Bacillus Cereus and Salmonella Enteritidis. (Korean J Nutrition 38(2): 112~116, 2005)

Enhancement of Anticarcinogenic Effect by Combination of Sedum sarmentosum Bunge with Platycodon grandiflorum A. Extracts (도라지 추출물 첨가에 의한 돌나물의 항발암 상승효과)

  • 박윤자;김미향;배송자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.136-142
    • /
    • 2002
  • Anticarcinogen is one of the major strategies for cancer control. It is well established that dietary factors play an important role in modulating the development of certain types of human cancer. We investiagted the anticarcinogenic effects of Sedum sarmentosum Bunge (SS) with Platycodon grandiflorum A. extracts on HepG2, HeLa and MCF-7 cell lines. By the MTT assay, among the five partition layers of methanol extract of SS (SSM), the ethylether partition layer of SS (SSMEE) showed the strongest cytotoxic effects on all cell lines. We also investigated the synergistic effect of the combination of SS and PG extracts on growth inhibition of the HepG2, HeLa and MCF-7 cell lines compared to the effects of five partition layers of SSM. Combination of SS and PG extracts significantly increased cytotoxic effects on all cell lines. Therefore, we were able to conclude that ethylether partition layer, SSMEE might have potentially useful cytotoxic materials on all the human cancer cells which we used. And we could suggest that the combination of SS with PG enhanced the anticarcinogenic effect on HepG2, HeLa and MCF-7 cell lines. We also determined QR activity of partition layers of SSM, among them, SSMEE on HepG2 cells showed the highest QR activity, 3.21 as control value of 1.0.

Bioactivity and Cytotoxicity of Kombucha Fermented with Extracts from Green Tea and Citrus Peel (감귤과 녹차의 추출액으로 제조한 콤부차의 생리 활성 및 일반 세포 독성)

  • Shin, Seung-Shick;Ko, Hye-Myoung;Kim, Chung-I;Park, Sung-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1838-1842
    • /
    • 2016
  • Kombucha (K) is a fermented beverage made from black tea by symbiotic micro-organisms of bacteria and yeasts. To enhance bio-activities of K, we produced citrus/green tea Kombucha (CK) by adding extracts of citrus peel and green tea obtained from Jeju Island. ORAC assays showed that anti-oxidative capacity of CK increased by approximately 3-folds compared to K. We examined anti-cancer properties of extracts from citrus peel and/or green tea using 5637 human bladder cancer cells and B16F10 murine melanoma cells. Proliferation of B16F10 cells was markedly inhibited at concentrations higher than $10{\mu}L/mL$. At a concentration of $20{\mu}L/mL$, anti-cancer activities of extracts were in the order of citrus peel< green tea< combination of both. Interestingly, a combination of both extracts showed a synergistic effect on inhibition of growth of cancer cells. CK fermented with citrus peel and green tea extracts showed enhanced anti-cancer activity compared to K. Cytotoxicity of CK on RAW 264.7 murine macrophages was negligible up to $100{\mu}L/mL$. Taken together, these results indicate that citrus Kombucha is safe to be developed as a functional beverage.

Antimicrobial Effect of Plagiorhegama dubium Extracts on Food-borne Pathogen (식중독 유발세균의 증식에 미치는 황련 추출물의 효과)

  • Bae Ji-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.1
    • /
    • pp.81-87
    • /
    • 2005
  • This study was performed to investigate the antimicrobial activities of the Plagiorhegama dubium extracts against food-borne pathogens. The methanol extract was partitioned into petroleum ether, chloroform, ethyl acetate, and methanol portions. The antimicrobial activity of the P. dubium extracts was determined using a paper disc method against food-borne pathogens and food spoilage bacteria. The methanol extracts of P. dubium showed the highest antimicrobial activity against Staphylococcus aureus and Escherichia coli. The synergistic effect has been found in combined extracts of P. dubium and Hedyotis diffsa as compared to each extracts alone. Finally, the growth inhibition curve was determined using methanol extracts of P. dubium against S. aureus and E. coli. The methanol extract of P. dubium showed strong antimicrobial activity against S. aureus at the concentration of 4,000 ppm. The 4,000 ppm of ethyl acetate portion from P. dubium retarded the growth of S. aureus more than 36 hours and E. coli up to 60 hours. The methanol extracts of P. dubium has been shown the antimicrobial activity against S. aureus and E. coli.

Antimicrobial Effect of Indigofera kirilowii Extracts on Food-borne Pathogens (산두근 추출물의 식중독성 미생물에 대한 항균효과)

  • 배지현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1106-1111
    • /
    • 2004
  • This study was performed to investigate the antimicrobial effect of the Indigofera kirilowii extracts against food-borne pathogens. The Indigofera kirilowii was extracted with methanol at room temperature, and fractionation of the methanol extract from Indigofera kirilowii was carried out by using petroleum ether, chloroform, ethyl acetate, and methanol, respectively. The antimicrobial activity of the Indigofera kirilowii extracts was determined using a paper disc method against food-borne pathogens and food spoilage bacteria. The ethyl acetate extract of Indigo/era kirilowii showed the highest antimicrobial activity against Staphylococcus aureus and Shigella dysenteriae. The water extract of Indigofera kirilowii showed relatively low antimicrobial activity against microorganisms used in this experiment. The synergistic effect has been found in combined extracts of Indigofera kirilowii and Pulsatilla koreana as compared to each extract alone. The growth inhibition curve was determined using ethyl acetate extracts of Indigofera kirilowii against S. aureus and S. dysenteriae. The ethyl acetate extract of Indigofera kirilowii showed strong antimicrobial activity against S. aureus at the concentration of 4,000 ppm. The 4,000 ppm of ethyl acetate extract from Indigofera kirilowii retarded the growth of S. aureus more than 24 hours and S. dysenteriae up to 48 hours. This study showed the possibility of using ethyl acetate extract of Indigofera kirilowii as a material of food preservative.

Antimicrobial Effect of Cutellaria baicalensis George Extracts on Food-Borne Pathogens (황금(Cutellaria baicalensis George) 추출물의 식중독성 미생물에 대한 항균효과)

  • Bae Ji-hyun;Lee Myung-Jin;Lee Sun-mi
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • This study was performed to investigate the antimicrobial effect of the Cutellaria baicalensis George extracts against food-borne pathogens. First, the Cutellaria baicalensis George was extracted with methanol at room temperatures, and fractionation of the methanol extracts from Cutellaria baicalensis George was carried out by using petroleum ether, chloroform, and ethyl acetate, and methanol respectively. The antimicrobial activity of the Cutellaria baicalensis George extracts was determined using a paper disc method against food-borne pathogens and food spoilage bacteria. The ethyl acetate extracts of Cutellaria baicalensis George showed the highest antimicrobial activity against Staphylococcus aureus and Shigella dysenteriae. The synergistic effect has been found in combined extracts of Cutellaria baicalensis George and Portulaca oleracea as compared to each extracts alone. Finally, the growth inhibition curve was determined using ethyl acetate extracts of Cutellaria baicalensis George against Staphylococcus aureus and Shigella dysenteriae. The ethyl acetate extract of Cutellaria baicalensis George showed strong antimicrobial activity against Staphylococcus aureus at the concentration of 4,000 ppm. The 4,000 ppm of ethyl acetate extract from Cutellaria baicalensis George retarded the growth of S. aureus more than 24 hours and Shigella dysenteriae up to 36 hours. The ethyl acetate extracts of Cutellaria baicalensis George has been shown the antimicrobial effect against Staphylococcus aureus and Shigella dysenteriae.