• Title/Summary/Keyword: Synergistic inhibition

Search Result 241, Processing Time 0.029 seconds

Environment Friendly Control of Gray Mold, a Ginseng Storage Disease Using Essential Oils (정유를 이용한 환경친화적 수삼 저장병 방제)

  • Kim, Jung-Bae;Kim, Nam-Kyu;Lim, Jin-Ha;Kim, Sun-Ick;Kim, Hyun-Ho;Song, Jeong-Young;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.236-241
    • /
    • 2009
  • The objective of this study was to find an environment friendly method of ginseng storage disease control using a natural plant extract. Essential oil was evaluated in terms of its antifungal ability against a variety of ginseng storage pathogens, and a variety of essential oils was conducted in order to assess the possibility of applying them as a component of a disease control strategy. Direct treatment with essential oil was demonstrated to exert a ginseng storage control effect. Methyl eugenol and thymol were shown to exert a mycelial growth inhibition effect of 80% on PDA media, using a paper disc containing 200 ppm of essential oil against Botrytis cinerea. The application of direct methyl eugenol treatment to ginseng resulted in a profound control effect. Both spray and dipping treatment of each methyl eugenol as well as thymol, evidenced a disease develoment of 10-20% as compared with the over 80% observed from all non-treated packages. Methyl eugenol in the large packages resulted in a disease index of 0.60 in the two essential oil treatments and also a small diseased area, as compared with the disease index of 1.65 and the wide diseased area observed in the non-treatment groups. Treatment with a mixture (methyl eugenol + thymol) in the synergistic effect test resulted in a relatively wide diseased area, as no discernable synergistic effect was detected. Methyl eugenol and thymol can be utilized as control agents in an environmentally friendly ginseng storage treatment, owing to the avirulent and clear effects detected in this study. In particular, ginseng must be ingested when fresh, and this is why a product for the control of ginseng storage diseases is so necessary.

Antibacterial Effects of Chungdae-tang Aqueous Extracts, and Their Combination Effects with Clindamycin against Gardnerella vaginalis In Vitro (청대탕(淸帶湯)의 Gardnerella vaginalis에 대한 시험관내 항균력 및 Clindamycin과의 병용 효과)

  • Kwon, Ji-Myung;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.2
    • /
    • pp.1-12
    • /
    • 2011
  • Objectives: The object of this study was to observe the in vitro antibacterial effects of Chungdae-tang aqueous extracts, traditionally used for treating various gynecological diseases including vaginitis in Korea against Gardnerella vaginalis, and combination effects of Chungdae-tang extracts with Clindamycin were also monitored in this study. Methods: Antibacterial activities against Gardnerella vaginalis of Chungdae-tang aqueous extracts were detected using standard agar microdilution methods. In addition, the effects on the bacterial growth curve were also monitored at MIC and MIC${\times}$2 levels. The combination effects of Chungdae-tang aqueous extracts with Clindamycin were observed by Checkerboard microtiter assay, and the effects of bacterial growth curve treated with or Chungdae-tang aqueous extracts MIC+Clindamycin MIC, 1/2MIC and 1/4MIC, respectively. In the present study, Gardnerella vaginalis were incubated under $37^{\circ}C$, 10% $CO_2$; and bacterial growth curves were calculated at 24, 48, 72, 96 and 120hrs after incubations. Results: MIC of Chungdae-tang aqueous extracts against Gardnerella vaginalis were detected as $3.906{\pm}2.344$(0.782~6.250) mg/$m\ell$, respectively. MIC of Clindamycin was detected as $0.010{\pm}0.006$(0.004~0.016) ${\mu}g/m\ell$ at same conditions. In addition, Clindamycin and Chungdae-tang aqueous extracts also showed marked dosage-dependent inhibition of bacterial growth, and more dramatical inhibitions were detected in Clindamycin+Chungdae-tang aqueous extracts MIC treatment as compared with each of single Clindamycin MIC and Chungdae-tang aqueous extracts MIC treatments, respectively. In addition, quite similar inhibitory effects on bacterial growth were detected in Clindamycin 1/4 MIC+Chungdae-tang aqueous extracts MIC treatment as compared with single Clindamycin MIC treatment in the present study. FIC index in combination of Chungdae-tang and Clindamycin were detected as $0.775{\pm}0.285$ (0.500~1.250) at Checkerboard microtiter assay. Conclusions: The results obtained in this study suggest that Chungdae-tang aqueous extracts showed antibacterial effects against Gardnerella vaginalis, and it also showed dosage-dependent inhibitory effects on the bacterial growth. In addition, combination treatment of Chungdae-tang aqueous extract with Clindamycin showed more potent inhibitory effects on the growth of Gardnerella vaginalis with FIC index $0.775{\pm}0.285$(0.500~1.250), respectively. It means, the combination of Chungdae-tang aqueous extract with Clindamycin is partially synergistic effects. It, therefore, is expected that effective dosages of Clindamycin will be reduced to 1/4 or over 1/4 levels as combination with Chungdae-tang extracts, respectively.

Tank-mix Feasibility Reducing the Application Rate of Quinclorac (Quinclorac 함량감소(含量減少)를 위한 혼합처방(混合處方)의 가능성(可能性) 연구(硏究))

  • Guh, J.O.;Han, S.U.;Chon, S.U.
    • Korean Journal of Weed Science
    • /
    • v.13 no.1
    • /
    • pp.14-18
    • /
    • 1993
  • Greenhouse study was undertaken to find tank-mix feasibility of quinclorac with molinate and propanil, selective post-emergence herbicides in controlling barnyardgrass, for reducing the application rate of quinclorac. Following foliar application in combination of quinclorac at 0.038, 0.075, 0.150, and 0.300kg ai/ha with molinate at 0.190, 0.380, 0.750 and 1.500kg ai/ha, and propanil at 0.263, 0.525, 1.050, and 2.100kg ai/ha at 3.5-leaf stage of barnyardgrass, fresh weight and weeding efficacy and their interaction by Colby's efficacy method were evaluated. Percent inhibition of barnyardgrass growth by quinclorac, molinate and propanil at recommended rate were 78.1, 26.1, and 61.7%, respectively. The dose combination shown above 85% in weeding efficacy were from 0.300kg of quinclorac with 0.75kg of molinate and 0.150kg of quinclorac with all rates of propanil. Therefore, combination of quinclorac with molinate tended to additive interaction and that of quinclorac with propanil appeared partially synergistic interaction. Conclusively, for reducing the application rate of quinclorac, the combination of quinclorac with propanil was more synergistic than that of quinclorac with molinate.

  • PDF

Antimicrobial and Synergistic Effects of Silver Nanoparticles Synthesized Using Soil Fungi of High Altitudes of Eastern Himalaya

  • Devi, Lamabam Sophiya;Joshi, S.R.
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • Fifty three fungi isolated from soils of different microhabitats of eastern Himalayan range (3,400-3,600 msl) were screened for mycosynthesis of silver nanaoparticles (AgNPs) and their efficacy as antimicrobials were assessed in combination with commonly used antibiotics. Three isolates $Aspergillus$ $terreus$ SP5, $Paecilomyces$ $lilacinus$ SF1 and $Fusarium$ sp. MP5 identified based on morphological and 18S rRNA gene sequences were found to synthesize AgNPs. These nanoparticles were characterized by visual observation followed by UV-visible spectrophotometric analysis. The AgNPs synthesized by $Aspergillus$ $terreus$ SP5, $Paecilomyces$ $lilacinus$ SF1 and $Fusarium$ sp. MP5 showed absorbance maxima at 412, 419, and 421 nm respectively in the visible region. Transmission electron microscopy micrograph showed formation of spherical AgNPs of 5-50 nm size. The antimicrobial activity of the mycosynthesized nanoparticles were investigated alone and in combination with commonly used antibiotics for analysis of growth inhibition zone against test organisms, namely, $Staphylococcus$ $aureus$ MTCC96, $Streptococcus$ $pyogenes$ MTCC1925, $Salmonella$ $enterica$ MTCC735 and $Enterococcus$ $faecalis$ MTCC2729. The mycosynthesized nanoparticles showed potent antibacterial activity and interestingly their syngergistic effect with erythromycin, methicillin, chloramphenicol and ciprofloxacin was significantly higher as compared to inhibitions by AgNPs alone. The present study indicates that silver nanoparticles synthesized using soil borne indigenous fungus of high altitudes show considerable antimicrobial activity, deserving further investigation for potential applications.

Antibacterial activity of Tonghyeonipal-dan against Methicillin-resistant Staphylococcus aureus (통현이팔단 에탄올 추출물의 Methicillin Resistant Staphylococcus aureus에 대한 항균활성)

  • KIM, In-Won;KANG, Ok-Hwa;KONG, Ryong;KWON, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.30 no.5
    • /
    • pp.15-21
    • /
    • 2015
  • Objectives : Methicillin-resistantStaphylococcus aureus(MRSA) is a human pathogen. New antibacterial agents are needed to treat MRSA-related infections. This study investigated the antibacterial activity of EtOH 70% extracts ofTonghyeonipal-dan(THD) which prescription is composed of oriental medicine against MRSA.Methods : The antibacterial activity of THD was evaluated against MRSA strains by using the Disc diffusion method, broth microdilution method, Checkerboard dilution test, and Time-kill test; its mechanism of action was investigated by bacteriolysis, detergent or ATPase inhibitors were used.Results : The minimum inhibitory concentration (MIC) of THD is 1,000~2,000 μg/mL against MRSA. In the checkerboard dilution test, fractional inhibitory concentration index (FICI) of THD in combination with antibiotics indicated synergy or partial synergism againstS. aureus. Furthermore, a time-kill assay showed that the growth of the tasted bacteria was considerably inhibited after 24 h of treatment with the combination of THD with selected antibiotics. For measurement of cell membrane permeability, THD 500 μg/mL along with concentration of Triton X-100 (TX) and Tris-(hydroxymethyl) aminomethane (TRIS) were used. In the other hand, N,N-dicyclohexylcarbodimide (DCCD) and Sodium azide (NaN3) were used as an inhibitor of ATPase. TX, TRIS, DCCD and NaN3 cooperation againstS. aureusshowed synergistic action.Conclusions : Accordingly, antimicrobial activity of THD was affected by cell membrane and inhibitor of ATPase were assessed. These results suggest that THD has antibacterial activity, and that THD extract offers great potential as a natural antibiotic against MRSA.

Molecular Mechanism of NO-induced Cell Death of PC12 Cells by $IFN{\gamma}\;and\;TNF{\alpha}$

  • Yi, Seh-Yoon;Han, Seon-Kyu;Lee, Jee-Yeon;Yoo, Young-Sook
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.196-202
    • /
    • 2005
  • Nitric oxide (NO) is a small, diffusible, and highly reactive molecule, which plays dichotomous regulatory roles under physiological and pathological conditions. NO promotes apoptosis in some cells, and inhibits apoptosis in other cells. In the present study, we attempted to characterize the NO signaling pathway and cellular response in PC12 cells treated with cytokines. $IFN{\gamma}\;and\;TNF{\alpha}$ treatment resulted in a synergistic increase of nitrite accumulation, with the induction of inducible nitric oxide synthase (iNOS) in the PC12 cells. Moreover, as nitrite concentration increased, cell viability decreased. In order to explore MAP kinase involvement in nitric oxide production resultant from $IFN{\gamma}\;and\;TNF{\alpha}$ stimulation, we measured the activation of MAP kinase using specific MAP kinase inhibitors. PC12 cells pretreated with SB203580, a p38 MAP kinase-specific inhibitor, resulted in the inhibition of iNOS expression and NO production. However, PD98059, an ERK/MAP kinase-specific inhibitor, was not observed to exert such an effect. In addition, Stat1 activated by $IFN{\gamma}\;and\;TNF{\alpha}$ was interacted with p38 MAPK. These data suggest that p38 MAP kinase mediates cytokine-mediated iNOS expression in the PC12 cells, and Jak/Stat pathway interferes with p38 MAPK signaling pathway.

Studies on Inhibitory Effect of Inflammatory Cytokines Secretion from Brain Astrocytes by Polygala Tenuifolia (원지(遠志)에 의한 뇌(腦) 성장세포(星狀細胞)로부터 염증성(炎症性) 세포활성물질(細胞活性物質) 분필(分泌)의 억제(抑制) 효과(效果)에 관(關)한 연구(硏究))

  • Hwang Si-Young;Gang Hyeong-Won;Lyu Yeong-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.10 no.1
    • /
    • pp.95-108
    • /
    • 1999
  • We investigated whether an aqueous extract of Polygala tenuifolia root (PTAE) inhibits secretion of inflammatory cytokines from primary cultures of mouse astrocytes. PTAE dose-dependently inhibited the Tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$ secretion by astrocytes stimulated with substance P (SP) and lipopolysaccharide (LPS). Interleukin-1 (IL-1) has been shown to elevate $TNF-{\alpha}$ secretion from LPS-stimulated astrocytes while having no effect on astrocytes in the absence of LPS. We therefore also investigated whether IL-1 mediated inhibition of $TNF-{\alpha}$ secretion from primary astrocytes by PTAE. Treatment of PTAE to astrocytes stimulated with both LPS and SP decreased IL-1 secretion to the level observed with LPS alone. Moreover, incubation of astrocytes with IL-1 antibody abolished the synergistic cooperative effect of LPS and SP. Reverse transcriptase-polymerase chain reaction analysis demonstrated the significantly reduced level of the $TNF-{\alpha}$ mRNA was expressed in astrocytes treated with PTAE. These results suggest that PTAE has an antiinflammatory activity on the central nervous system curing some pathological disease states.

  • PDF

Effect of Achyrantis Radixs on Rat Chondrocyte Oxidative Stress and Its Signal Transduction (우슬이 산화적 스트레스와 관련한 세포내 신호전달계에 미치는 영향)

  • Kim, Eun-Jung;Chung, Hun-Woo;Kim, Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.841-848
    • /
    • 2008
  • Archyranthes radix has had extensive therapeutic application, and there has been increasing interest in its biological effects. However, the biochemical effects of Archyranthes radix on chondrocyte oxidative stress have never been systematically investigated. Therefore, we investigated the effects of Acyranthes radix on role of MAPK signal transduction pathway on oxidative stress induced by hydrogen peroxide in rat articular chondrocytes. The statistically significant inhibitory action of Archyranthes radix on cell proliferation was observed at above $5{\mu}g/m{\ell}$. Next, we examined the time-dependent effect of $5{\mu}g/m{\ell}$ Archyranthes radix on cell proliferaion. Archyranthes radix significantly inhibited cell proliferation from 12 hr after treatment (P<0.05). $H_2O_2$, resulted in a time- and dose-dependent cell proliferation, which was largely attributed to oxidative damage. Acyranthes radix and $H_2O_2$ treatment caused marked sustained activation of phosphorylation of ERK1/2. Moreover, the synergistic phosphorylation of p44/42 MAPK by $H_2O_2$ and Archyranthes radix was selectively inhibited by PD 98059, a p44/42 MAPK inhibitor. In conclusion, these results are consistent with the hypothesis that under conditions of oxidative stress, the $H_2O_2$-induced inhibition of cell proliferation in the rat chondrocyte is mediated through a modulation of the Archyranthes radix signaling pathway, promoting further phosphorylation of p44/42 MAPK, indicating a potentially important role in cartilage repair and in the treatment of osteoarthritic cartilage.

Synergistic Effect of Natural Killer Cells and Bee Venom on Inhibition of NCI-H157 Cell Growth

  • Sung, Hee Jin;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.33 no.1
    • /
    • pp.47-56
    • /
    • 2016
  • Objectives : This study examined the effects of Bee venom on apoptosis in NCI-H157 human lung cancer cells and for promoting the apoptosis effects of Natural killer cell. Methods : Bee venom and Natural killer-92 cells were cultured either separately from or together with NCI-H157 cells for 24 hours. To figure out whether Bee venom enhances the cytotoxic effect of Natural Killer-92 cells, a cell viability assay was conducted. To observe the changes in Death receptors, apoptotic regulatory proteins and Nuclear $Factor-{\kappa}B$, western blot analysis was conducted. To observe the effect of Bee venom through an extrinsic mechanism, a transfection assay was conducted. Results : 1. Natural killer-92 cells and Bee venom significantly inhibited the growth of NCI-H157 cells and co-culture had more inhibitory effect than the separate culture. 2. Expressions of Fas, DR3, DR6, Bax, caspase-3, caspase-8, cleaved caspase-3, cleaved caspase-8 were increased, and expressions of Bcl-2 and cIAP were decreased. More efficacy was observed in co-culture than in separate culture. 3. Nuclear $Factor-{\kappa}B$ activation was clearly decreased. And co-culture showed much less activation than separate culture. 4. As a result of treatment for DR-siRNA, the reduced cell viability of NCI-H157 cells and the activity of Nuclear $Factor-{\kappa}B$ were increased. With this, it can be seen that Bee venom and Natural killer-92 cells have an effect on the cancer cells through the extrinsic mechanism. Conclusion : Bee venom is effective in inhibiting the growth of human lung cancer cells. Furthermore Bee venom effectively enhances the functions of Natural killer cells.

Sulforaphane Inhibits Growth of Human Breast Cancer Cells and Augments the Therapeutic Index of the Chemotherapeutic Drug, Gemcitabine

  • Hussain, Arif;Mohsin, Javeria;Prabhu, Sathyen Alwin;Begum, Salema;Nusri, Qurrat El-Ain;Harish, Geetganga;Javed, Elham;Khan, Munawwar Ali;Sharma, Chhavi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5855-5860
    • /
    • 2013
  • Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI)<1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.