• 제목/요약/키워드: Synergistic cytotoxicity

검색결과 78건 처리시간 0.021초

팔진탕합화적환(八珍湯合化積丸)과 Adriamycin의 병용처리시 나타나는 synergistic 항종양(抗腫瘍) 효과(效果)에 관(關)한 작용기전 연구(硏究) (Study on Synergistic Anti-tumor Effect of Combination with Adriamycin and Palginhonhapwhajucwhan)

  • 문구;문석재;원진희;조정연;박상구;송봉길;박래길;이병구
    • 대한한방내과학회지
    • /
    • 제21권3호
    • /
    • pp.443-452
    • /
    • 2000
  • Objective : This study was designed to evaluate the synergistic effect on cytotoxicity of combination with adriamycin and Palginhonhapwhajucwhan, a traditional prescription for cancer treatment in oriental medicine, in Chang, HL-60, Hep-3B and Alexander cells. Methods : We observed cell viability in Chang, HL-60, Hep-3B, and Alexander cells by crystal violet staining. Those cells were treated with various concentrations of adriamycin alone, Palginhonhapwhajucwhan alone and combination of two medications for 10 hr. On condition of $0.5{\mu}l/ml$ adriamycin alone, $15.6{\mu}l/ml$ Paljintanghapwhajucwhan alone and combination of two medications, at first, we observed colony forming of Chang and HL-60 cells. Second, we observed DNA fragmentation by agarose electrophoresis in Chang, HL-60, Hep-38 and Alexander cells. Third, we measured the catalytic activation of caspase-1, 2, 3, 6, 8, and 9 protease in Chang cells and caspase-3 protease in Chang, HL-60, Hep-3B and Alexander cells by using fluorogenic substrate. Finally, we isolated mRNA of Fas in Chang, HL-60, Hep-38 and Alexander cells and observed that Fas gene was amplified by RT-PCR Results : 1. The combination of adriamycin and Palginhonhapwhajucwhan synergistically augmented the cytotoxicity of Chang and HL-60 cells whereas did not in Hep-38 and Alexander cells. 2. Cotreatment of two drugs also markedly inhibited the colony forming ability both in Chang and HL-60 cells. 3. The cytotoxicity of these medicatons was revealed as apoptosis characterized by high molecular wight DNA fragmentaton. 4. The apoptotic cytotoxicity was mediated by activation of caspase-3 protease in Chang cells. 5. Synergistic increase in apoptotic cytotoxicity by combination of two medications was dependent on the expression of Fas in cancer cells. Conclusions : Combination of adriamycin and Palginhonhapwhajucwhan significantly augmented apoptotic cytotoxicity of Fas-positive cells such as Chang and HL-60 cells via acticaton of apoptosis signaling pathway.

  • PDF

Analogues of Hybrid Antimicrobial Peptide, CAMA-P2, Designed with Improved Antimicrobial and Synergistic Activities

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2577-2583
    • /
    • 2011
  • We have designed a 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) with high bacterial cell selectivity. CAMA-P2 is an ${\alpha}$-helical antimicrobial peptide designed from a CAMA hybrid peptide and substitution of Gly-Ile-Gly hinge sequence of CAMA to Pro influences the flexibility at central part of CAMA. Based on structure-activity relationships of CAMA peptides, to investigate the effects of the total positive charges on antimicrobial activity of CAMA-P2, the $Ser^{14}{\rightarrow}$Lys analogue (CAMA-syn1) was synthesized. The role of tryptophan at C-terminal ${\alpha}$-helix on its antimicrobial activity as well as synergistic activity was also investigated using $Ser^{14}{\rightarrow}$Lys/$Phe^{18}{\rightarrow}$Trp analogue (CAMA-syn2). Also, we designed CAMA-syn3 by substitution of $Lys^{16}$ located opposite side of substituted $Lys^{14}$ of CAMA-syn1 with Leu residue, resulting in increase of hydrophobicity and amphipathicity of the peptide. All of CAMA-syn analogues showed good antimicrobial activities similar to those of CAMA and CAMA-P2. The CAMA-syn1 and CAMA-syn2 showed low hemolytic activity and cytotoxicity against human keratinocyte Haca-T cells while CAMA-syn3 showed hemolytic activity and cytotoxicity at its MIC value. We then investigated their abilities to act synergistically in combination with the antimicrobial flavonoids and synthetic compounds screened in our laboratory. The results showed that all peptides exhibited synergistic effects with dihydrobinetin, while only CAMA-syn2 exhibited synergistic effects with YKAs3001 against both S. aureus and MRSA, suggesting that Trp residue at C-terminus of CAMA-syn2 may facilitate the polar antibiotic flavonoids and synthetic compounds to permeabilize the membrane. This study will be useful for the development of new antibiotic peptides with potent antimicrobial and synergistic activity but without cytotoxicity.

인간 폐암세포주 H-460세포에서 팔진탕합화적환과 $As_2O_3$의 병용처리에 의한 항종양 증진효과 (Antitumor Effect of the Cotreatment of Paljintanghabhwajeoghwan and $As_2O_3$ in Human Lung Cancer Cell Line H-460)

  • 송봉길;원진희;김동웅;이종덕;문구
    • 동의생리병리학회지
    • /
    • 제18권3호
    • /
    • pp.808-818
    • /
    • 2004
  • This study was designed to elucidate the synergistic cytotoxic mechanisms of the cotreatment of Paljintanghabhwajeoghwan (Paljin) and As₂O₃ in human lung cancer cell line, H-460. The combination of Paljin and As₂O₃ synergistically augmented the cytotoxicity of Paljin and As₂O₃ in H-460 cells. The nature of cytotoxicity was revealed as apoptosis which characterized by chromatin condensation and fragmentation in DAPI staining. Mitochodrial membrane potential transition was observed in H-460 cells treated with Paljin and As₂O₃. The apoptotic cytotoxicity of Paljin and As₂O₃ was accompanied by the cleavage of PARP and ICAD. Of note, pro-apoptotic Bak protein was obviously increased. However, the expression of p53 was not affected by the cotreatment of Paljin and As₂O₃. In addition, the expression of DR5 was increased by the cotreatment of Paljin and AS203. This results suggest that the synergistic cytotoxicity of the cotreatment of Paljin and As₂O₃ might be caused by the changes of the expression levels of a lots proteins, such as PARP, ICAD, Bak, DR5, which play pivotal roles in survival or death of cells.

인간 간암세포주 HepG2에서 팔진항암단과 adriamycin의 병용처리에 의한 항종양 효과 (Anticancer Effect of Combination with Paljinhangahm-dan and Adriamycin on HepG2 Human Malignant Hepatoma Cell Line)

  • 백은기;문구;원진희;김동웅;백동기;윤준철;송봉길;이병호;박상구
    • 동의생리병리학회지
    • /
    • 제17권5호
    • /
    • pp.1243-1250
    • /
    • 2003
  • This study was designed to elucidate the synergistic cytotoxic mechanisms of the co-treatment of adriamycin and Paljinhangahm-dan in human hepatoma malignant cancer cell line, HepG2. The combination of adriamycin and the ethanol extract of Paljinhangahm-dan synergistically augmented the cytotoxicity of Adriamycin and Paljinhangahm-dan in HepG2 cells. The cytotoxicity of two drugs was revealed as apoptosis characterized by DNA fragmentaton in agarose gel electrophoresis. The apoptotic cytotoxicity of adriamycin and Paljinhangahm-dan was accompanied by the cleavage of procaspase -3 protease and PARP. Of note, anti apoptotic Bcl2 protein was obviously decreased, but Fas was dramatically increased in HepG2 cells co-treated with Adriamycin and Paljinhangahm -dan. In addition, through 2-D gel electorphoresis, we observed that the expression levels of a lot of proteins were obviously changed by the status of drug treatments. This results suggest that the synergistic cytotoxicity of the co-treatment of adriamycin and Paljinhangahm-dan might be caused by the changes of the expression levels of a lot of proteins which play pivotal roles in cell survival or death.

폐암세포주 H-157에서 가감증액탕과 $As_2O_3$의 병용처리에 의한 항종양효과 (Antitumor Effect of Gagamjengac-tang and $As_2O_3$ in Human Lung Cancer Cell Line, H-157)

  • 이병호;원진희;김동웅;이종덕;문구
    • 대한한의학회지
    • /
    • 제25권3호
    • /
    • pp.191-202
    • /
    • 2004
  • Objectives : This study was designed to elucidate the synergistic cytotoxic mechanisms of the co-treatment of Gagamjengac-tang (GGJAT) and As₂O₃ in human lung cancer cell line, H-157. Methods : The combination of GGJAT and As₂O₃ synergistically augmented the cytotoxicity of GGJAT and As₂O₃ in H­157 cells. The cytotoxicity by the combination of these two drugs was revealed as apoptosis which was characterized by chromatin condensation and fragmentation in DAPI staining. Results : Antioxidant NAC completely blocked the apoptotic death of H-157 cells by GGJAT and As₂O₃. The apoptotic cytotoxicity of GGJAT and As₂O₃ was accompanied by the induction of DR4 and DR5 in RT-PCR. In addition, antioxidant enzymes such as SOD1, GSH synthetase and GSH reductase were also increased in H-157 cells treated with GGJAT and As₂O₃. However, of note, p53, Fas, FasL and TRAIL were not detected in H-157 cells treated with GGJAT and As₂O₃ by RT-PCR. Conclusions : These results suggest that the synergistic cytotoxicity of the co-treatment of H-457 cells treated with GGJAT and As₂O₃ may cause induction of death receptors DR4 and DR5 as well as reactive oxygen species.

  • PDF

이온화 방사선 및 염화수은 처리에 따른 어류 간암세포의 생존능 평가 (Synergistic Effects of Ionizing Radiation and Mercury Chloride on Cell Viability in Fish Hepatoma Cells)

  • 한민;현경만;모하마드닐리;황인영;김진규
    • 환경생물
    • /
    • 제27권2호
    • /
    • pp.140-145
    • /
    • 2009
  • All organisms are being exposed to harmful factors present in the environmental. The combined action of various factors is a distinguishing feature of modern life. An interaction between two chemicals is considered as synergistic when the effect produced is greater than the sum of the two single responses. The biological effects due to the combined action of ionizing radiation with the other factor are hard to estimate and predict in advance. In the current study, we investigated the synergistic effects between ionizing and $HgCl_2$ using fish hepatoma cells (PLHC-1 cells). The results showed a dramatic decrease of cell viability after simultaneous treatment of PLHC-1 cells with ionizing radiation and $HgCl_2$. Neiither of the two had any cytotoxic effect when treated alone. The cytotoxicity of ionizing radiation was enhanced in the presence of $HgCl_2$. The synergistic effects were observed after exposure of the PLHC-1 cells to ionizing radiation combined with $HgCl_2$. The synergistic interaction was due to an increase of irreversibly damaged cells after the combined exposure. Analysis of the extent of synergistic interaction enables to make quantitative estimation of irreversibly damaged cells after the combined exposure. The present study suggests that PLHC-1 cells can serve as rapid screening tools for detecting the toxicity of harmful factors.

Antibacterial Activity and Synergism of the Hybrid Antimicrobial Peptide, CAMA-syn

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1839-1844
    • /
    • 2009
  • A 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) has high antimicrobial activity without toxicity. To investigate the effects of the total positive charges of CAMA on the antibacterial activity and toxicity, a hybrid peptide analogue (CAMA-syn) was designed with substitutions of $Ile^{10}\;and\;Ser^{16}$ with Lys. According to CD spectra, structure of CAMA-syn with increase of cationicity was very similar to that of CAMA in DPC micelle. CAMA-syn showed antimicrobial activity similar with CAMA while CAMA-syn has no hemolytic activity and much lower cytotoxicity against RAW 264.7 macrophage cells than CAMA. Also, CAMA and CAMA-syn significantly inhibited NO production by LPSstimulated RAW264.7 macrophage at 10.0∼20.0 $\mu$M. CAMA-syn displayed salt resistance on antimicrobial activity against Escherichia coli at the physiological concentrations of $CaCl_2\;and\;MgCl_2$. The combination studies of peptides and antibiotics showed that CAMA-syn has synergistic effects with synthetic compound and flavonoid against Enterococcus faecalis and VREF. CAMA-syn can be a good candidate for the development of new antibiotics with potent antibacterial and synergistic activity but without cytotoxicity.

Improving Combination Cancer Therapy by Acetaminophen and Romidepsin in Non-small Cell Lung Cancer Cells

  • Lee, Seong-Min;Park, James S.;Kim, Keun-Sik
    • 대한의생명과학회지
    • /
    • 제25권4호
    • /
    • pp.293-301
    • /
    • 2019
  • Combination chemotherapy is more effective than mono-chemotherapy and is widely used in clinical practice for enhanced cancer treatment. In this study, we investigated the potential synergistic effects of acetaminophen, a common component in many cold medicines, and romidepsin, a histone deacetylase (HDAC) inhibitor, in the A549 non-small cell lung cancer (NSCLC) cell line. The combination of acetaminophen and romidepsin also exerted significant cytotoxicity and apoptosis induced by activation of caspase-3 on tumor cells in vitro. Moreover, combination therapy significantly induced increased production of chemokines that stimulate migration of activated T-cells into tumor cells. This mechanism can lead to active T-cell mediated anti-tumor immunity in addition to the direct cytotoxic chemotherapeutic effect. Activated T-cells led to enhanced cytotoxicity in drug-treated A549 cells through interaction with tumor cells. These results suggested that the interaction between the two drugs is synergistic and significant. In conclusion, our data showed that the use of romidepsin and low concentrations acetaminophen could induce effective anti-tumor effects via enhanced tumor immune and direct cytotoxic chemotherapeutic responses. The combination of acetaminophen with romidepsin should be considered as a promising strategy for the treatment of lung cancer.

인간 폐암세포주 H-460 세포에서 가감십전대보탕과 $As_2O_3$의 병용처리에 의한 항종양 증진효과 (Antitumor Effect of the Cotreatment of Gagamsibjeondaebo-tang and $As_2O_3$ in Human Lung Cancer Cell Line H-460)

  • 허종찬;원진희;김동웅;한세희;문구
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1089-1097
    • /
    • 2004
  • This study was designed to elucidate the synergistic cytotoxic mechanisms of the cotreatment of Gagamsibjeondaebo-tang (GSD) and AS₂O₃ in human lung cancer cell line, H-460. The combination of GSD and AS₂O₃ synergistically augmented the cytotoxicity of GSD and AS₂O₃ in H-460 cells. The nature of cytotoxicity was revealed as apoptosis which was characterized by chromatin condensation and fragmentaton in DAPI staining. The apoptotic cytotoxicity of GSD and AS₂O₃ was accompanied by the cleavage of PARP. Of note, the expression of pro-apoptotic BclXS protein was increased, but the expressions of Sax and BclXL was not affected in H-460 cells treated with GSD and AS₂O₃. In addition, antioxidant NAC completely blocked the apoptotic death of H-460 cells by GSD and AS₂O₃. In conclusion, this results suggest that the cotreatment of GSD and AS203 induces the synergistic apoptotis of human large cell lung cancer cell line, H-460 via the induction of BclXS and reactive oxygen species (ROS).