• Title/Summary/Keyword: Synedra

Search Result 62, Processing Time 0.017 seconds

Limno-Biological Investigation of Lake Ok-Jeong (옥정호의 육수생물학적 연구)

  • SONG Hyung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-25
    • /
    • 1982
  • Limnological study on the physico-chemical properties and biological characteristics of the Lake Ok-Jeong was made from May 1980 to August 1981. For the planktonic organisms in the lake, species composition, seasonal change and diurnal vertical distribution based on the monthly plankton samples were investigated in conjunction with the physico-chemical properties of the body of water in the lake. Analysis of temperature revealed that there were three distinctive periods in terms of vertical mixing of the water column. During the winter season (November-March) the vertical column was completely mixed, and no temperature gradient was observed. In February temperature of the whole column from the surface to the bottom was $3.5^{\circ}C$, which was the minimum value. With seasonal warming in spring, surface water forms thermoclines at the depth of 0-10 m from April to June. In summer (July-October) the surface mixing layer was deepened to form a strong thermocline at the depth of 15-25 m. At this time surface water reached up to $28.2^{\circ}C$ in August, accompanied by a significant increase in the temperature of bottom layer. Maximum bottom temperature was $r5^{\circ}C$ which occurred in September, thus showing that this lake keeps a significant turbulence Aehgh the hypolimnial layer. As autumn cooling proceeded summer stratification was destroyed from the end of October resulting in vertical mixing. In surface layer seasonal changes of pH were within the range from 6.8 in January to 9.0 in guutuost. Thighest value observed in August was mainly due to the photosynthetic activity of the phytoplankton. In the surface layer DO was always saturated throughout the year. Particularly in winter (January-April) the surface water was oversaturated (Max. 15.2 ppm in March). Vertical variation of DO was not remarkable, and bottom water was fairly well oxygenated. Transparency was closely related to the phytoplankton bloom. The highest value (4.6 m) was recorded in February when the primary production was low. During summer transparency decreased hand the lowest value (0.9 m) was recorded in August. It is mainly due to the dense blooming of gnabaena spiroides var. crassa in the surface layer. A. The amount of inorganic matters (Ca, Mg, Fe) reveals that Lake Ok-Jeong is classified as a soft-water lake. The amount of Cl, $NO_3-N$ and COD in 1981 was slightly higher than those in 1980. Heavy metals (Zn, Cu, Pb, Cd and Hg) were not detectable throughout the study period. During the study period 107 species of planktonic organisms representing 72 genera were identified. They include 12 species of Cyanophyta, 19 species of Bacillariophyta, 23 species of Chlorophyta, 14 species of Protozoa, 29 species of Rotifera, 4 species of Cladocera and 6 species of Copepoda. Bimodal blooming of phytoplankton was observed. A large blooming ($1,504\times10^3\;cells/l$ in October) was observed from July to October; a small blooming was present ($236\times10^3\;cells/l$ in February) from January to April. The dominant phytoplankton species include Melosira granulata, Anabaena spiroides, Asterionella gracillima and Microcystis aeruginota, which were classified into three seasonal groups : summer group, winter group and the whole year group. The sumner group includes Melosira granulate and Anabaena spiroides ; the winter group includes Asterionella gracillima and Synedra acus, S. ulna: the whole year group includes Microtystis aeruginosa and Ankistrodesmus falcatus. It is noted that M. granulate tends to aggregate in the bottom layer from January to August. The dominant zooplankters were Thermocpclops taihokuensis, Difflugia corona, Bosmina longirostris, Bosminopsis deitersi, Keratelle quadrata and Asplanchna priodonta. A single peak of zooplankton growth was observed and maximum zooplankton occurrence was present in July. Diurnal vertical migration was revealed by Microcystis aeruginosa, M. incerta, Anabaena spiroides, Melosira granulata, and Bosmina longirostris. Of these, M. granulata descends to the bottom and forms aggregation after sunset. B. longirostris shows fairly typical nocturnal migration. They ascends to the surface after sunset and disperse in the whole water column during night. Foully one species of fish representing 31 genera were collected. Of these 13 species including Pseudoperilnmpus uyekii and Coreoleuciscus splendidus were indigenous species of Korean inland waters. The indicator species of water quality determination include Microcystis aeruginosa, Melosira granulata, Asterionelta gracillima, Brachionus calyciflorus, Filinia longiseta, Conochiloides natans, Asplanchna priodonta, Difflugia corona, Eudorina elegans, Ceratium hirundinella, Bosmina longirostris, Bosminopsis deitersi, Heliodiaptomus kikuchii and Thermocyclops taihokuensis. These species have been known the indicator groups which are commonly found in the eutrophic lakes. Based on these planktonic indicators Lake Ok-Jeong can be classified into an eutrophic lake.

  • PDF

Grazing Effects of Freshwater Bivalve Unio douglasiae on the Hibernal Diatom Bloom in the Eutrophic Lake and Stream (저온기 부영양 수계의 규조 발생에 대한 말조개의 섭식특성)

  • Lee, Song-Hee;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • Filtration rates and fecal production of freshwater bivalve, Unio douglasiae on two kinds of hibernal diatom communities were measured simultaneously in a laboratory. One community is the Han River (HAN), which dominated by Asterionella Formosa. Stephanodiscus hantzschii (ca. 98% of total phytoplankton). The other community is the Ilgam Lake (IL), which dominated by Synedra ulna, Scenedesmus sp. Microcystis aeruginosa (ca. 82%). The HAN water has higher concentrations of nutrient (TN and TP) and chlorophyll $\alpha$ (Chl-$\alpha$), lower turbidity and conductivity than the IL water. Water sampling for the feeding experiment was conducted in the same day (Jan 15, 2008) and similar time (AM 10:00 for HAN, AM 11:00 for IL). Mussels with the similar size ($0.0{\pm}0.5\;cm$) were collected from the Gunsan and Okgu district (Jeonbuk), and starved in a laboratory for 2 days before the experiment. The experiment comprised CON (no addition of mussel), LOW (addition of mussel at 0.3 indiv. $L^{-1}$), MID (1.0 indiv. $L^{-1}$) and HIGH (2.0 indiv. $L^{-1}$), respectively. With the increment of mussel density and time, the concentration of Chl-$\alpha$ in two diatom communities were clearly decreased; Chl-$\alpha$ of HAN gradually decreased after 1 hour of mussel treatment, while that of IL decreased as soon as mussel introduction. In 7 hours of treatment, the former was removed finally up to about 90% of control, while the later was remained as about 50%. Under the presence of mussel, total phytoplankton density was shifted as the similar patterns to that of Chl-$\alpha$ (r=0.705, P<0.0001), however, there showed the drastic differences following a species. Based on the concentration of Chl-$\alpha$, filtration rate of U. douglasiae averaged 0.266 $L\;g^{-1}\;h^{-1}$ (0.115 to 0.442) on HAN and $0.577\;L\;g^{-1}\;h^{-1}$ (0.146 to 1.428) on IL water, respectively. There were no differences in feces production among the mussel density in the HAH water (ANOVA, P>0.5), while in IL water, including lots of seston, the HIGH mussel produced the higher fecal materials, over one hundred times of LOW. These results suggest that freshwater bivalve Unio douglasiae have the alternative potential, as a filter-feeder of seston in turbid lake, and a biological controller of diatom bloom in cold stream.