• Title/Summary/Keyword: Synchronous moving

Search Result 73, Processing Time 0.018 seconds

Paleomagnetic Study of the Yeonil Group in Pohang Basin (포항분지(浦港盆地)에 분포(分布)하는 연일층군(延日層群)의 고지자기(古地磁氣) 연구(硏究))

  • Kim, Kwang Ho;Doh, Seong-Jae;Hwang, Chang-Soo;Lim, Dong Seong
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.507-518
    • /
    • 1993
  • Paleomagnetic investigations have been carried out on the Tertiary sedimentary formations (Yeonil Group) in Pohang basin, southeastern Korea. A total of 215 samples were collected from 26 sites. Progressive thermal demagnetization indicates that many samples have unstable magnetization and do not reveal a characteristic direction. However, some samples from the lower and upper Duho Formation show a characteristic direction $D/I=7.8^{\circ}/48.3^{\circ}$ (${\alpha}_{95}=3.7^{\circ}$, k=174.1). Stepwise thermal demagnetization data show that some samples from the Hagjeon and middle Duho Formations reveal great-circle distributions moving from the present to a reversed direction of geomagnetic field. The mean of intersection points of the great-circles is nearly antipodal to the characteristic normal direction of the lower and upper Duho Formation. We infer that the Hagjeon Formation was formed during the reversed polarity chron C5B (16.2~14.7 Ma) and the Duho Formation 14.7~11.6 Ma based on our results and previous paleontologic and age dating data. Paleomagnetic direction for the Middle Miocene of Korea, analysed from the combined results of stable endpoints and great circles, is $D/I=8.7^{\circ}/53.9^{\circ}$ (${\alpha}_{95}=4.2^{\circ}$, k=74.8), and the corresponding paleopole is Lat./Long.=$82.7^{\circ}/230.2^{\circ}$ (${\delta}p=2.8^{\circ}$, ${\delta}m=5.9^{\circ}$). On the basis of this, we interpret that the opening of the East sea (Japan sea) or the synchronous clockwise rotation of the Southwest Japan exerted no structural influence on the Yeonil Group in the Middle Miocene.

  • PDF

Development of Servo for Small Tracking Radars (소형 추적 레이다용 서보 개발)

  • Lee, Jong-Kuk;Lee, Seok-In;Kim, Jun-Su;Song, Tae-Seong;Eom, Young-Cheol;Ahn, Se-Hwan;Shin, Yu-Jin;Joo, Ji-han;Kwon, Jun-Beom;Kim, Sang-Wook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.21-30
    • /
    • 2022
  • This paper describes the design, manufacture, and testing of servos applicable to small tracking radars. First, Chapter 1 describes the necessity of this study. Chapter 2 describes the development of servos applicable to future tracking radars in small missile systems. Chapter 3 describes the design and test results for current control of brushed DC motors, brushless DC motors, and permanent magnet synchronous motors. And Chapter 4 describes the design and test results for speed control of the test wheel. And in Chapter 5, the results of the previous tests are summarized. In this paper, some pictures were intentionally blurred for security reasons, and the control result of test wheel was described, not the test with the developed gimbals.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.