• Title/Summary/Keyword: Synchronous moving

검색결과 73건 처리시간 1.894초

Bluetooth DK를 이용한 동영상 전송 시스템 구현 (Implementation Of Moving Picture Transfer System Using Bluetooth DK)

  • 조경연;이승은;최종찬
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 춘계학술대회 발표논문집
    • /
    • pp.169-172
    • /
    • 2001
  • 본 논문은 ATMEL Bluetooth Development Kit (DK)를 이용하여 음성과 데이터를 전송하는 시스템을 구현하는 것으로, Bluetooth 디바이스간 연결을 위한 과정을 분석하였다. 또한, Synchronous Connection-Oriented (SCO) 링크와 Asynchronous Connectionless (ACL) 링크를 형성하여 음성과 데이터를 송수신하는 어플리케이션을 구현하였다. 향후 가정, 사무실, 공장 등에서 근거리 무선 통신 기술로 자리잡아갈 Bluetooth 기술을 적용한 어플리케이션 개발은 필수적이다. 본 논문에서는 Bluetooth 호스트 컨트롤러 인터페이스(HCI)를 이용한 어플리케이션 개발 과정을 제시하였다.

Precision Position Control of PMSM using Neural Observer and Parameter Compensator

  • Ko, Jong-Sun;Seo, Young-Ger;Kim, Hyun-Sik
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents neural load torque compensation method which is composed of a deadbeat load torque observer and gains compensation by a parameter estimator. As a result, the response of the PMSM (permanent magnet synchronous motor) obtains better precision position control. To reduce the noise effect, the post-filter is implemented by a MA (moving average) process. The parameter compensator with an RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural load torque observer to resolve problems. The neural network is trained in online phases and it is composed by a feed forward recall and error back-propagation training. During normal operation, the input-output response is sampled and the weighting value is trained multi-times by the error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against load torque and parameter variation. Stability and usefulness are verified by computer simulation and experiment.

초고속열차용 축소모델 선형동기전동기의 개념 및 기본설계 연구 (A Study on a Concept and Basic Design of a Small-Scaled LSM for Ultra-High Speed Railway Transit)

  • 박찬배;이형우;이병송;박현준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.905-911
    • /
    • 2009
  • The viscosity drive method by the wheel which is widely used in the conventional railway systems needs a large friction force between the wheel and the guide-rail, which brings on a thrust force for a quick acceleration and a high-speed travelling. In addition, the viscosity drive method needs an increase of the vehicle weight for a large friction force. However, a maglev train is possible to be driven by the electro-magnet instead of the wheel, which produces a levitation and thrust force without any contact. In general, low-speed maglev train uses a linear induction motor(LIM) for propulsion that is operated under 300[km/h] due to the power-collecting and end-effect problems of LIM. In case of high-speed maglev train, a linear synchronous motor(LSM) is more suitable than LIM because of a high-efficiency and high-output properties. LSM has a driving principle as same as a conventional rotary synchronous motor(RSM), and the torque of RSM becomes the thrust force of LSM. A conventional LSM has relatively large air-gap compared with a conventional RSM. So, it must be achieved a design that is considered normal force by finite-asymmetric structure, end-effect on the entry and exit part, and support structure of a moving part. Therefore, in this research, authors accomplish a conceptualizing and basic design of a small-scaled LSM, and characteristics analysis using FEM.

  • PDF

슈퍼프리미엄(IE4)급 유도전동기 대체용 동기 릴럭턴스 전동기 고효율 설계연구 (High Efficiency Design of Ie4 Class Synrm Subsituting for Induction Motor)

  • 유광현;이주
    • 조명전기설비학회논문지
    • /
    • 제29권11호
    • /
    • pp.35-40
    • /
    • 2015
  • In accordance with global energy conservation policies such as MEPS (Minimum Energy Performance Standard), electric motor industry is moving to super-high-efficiency machines and research to develop IE4 (International Energy Efficiency Class 4) motors has been launched. In this situation, SynRM (Synchronous Reluctance Motor) has been attracting attention in place of induction motor which hardly provides super premium efficiency. As a result, much research on SynRM is being performed at home and abroad. Also, some products have already been appearing in the market. Compared to induction motor, SynRM has better efficiency per unit area and wider operating range. Although the utilization of control system in synchronous motor results in higher prices, we still need to concentrate on developments of SynRM so as to comply with the new policies. This study demonstrated the electromagnetic design methods of super premium SynRM while maintaining the frame of existing IE3 induction motor. We documented the design procedures for generating high saliency which is the most essential and mechanical stress anlaysis is also treated. In conclusion, we proved the validity of our design by manufacturing and testing our 3 models.

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

엔코더리스 마그넷 모션을 이용한 위치제어에 대한 리니어모터 실험적 연구 (Experimental Study on Position Control System Using Encoderless Magnetic Motion)

  • 김홍윤;윤영민;심호근;권영목;허훈
    • 대한기계학회논문집A
    • /
    • 제40권1호
    • /
    • pp.9-16
    • /
    • 2016
  • 영구자석 선형 동기전동기(PMLSM : Permanent Magnet Linear Synchronous Motor)의 구조에서, 영구자석이 레일에 고정되고 코일이 움직이는 기존 영구자석 선형 동기전동기와 달리(영구자석 = 고정자, 코일 = 이동자), 코일이 고정되고, 영구자석을 움직이는(영구자석 = 이동자, 코일 = 고정자) 구조의 위치제어시스템을 제안하고자 한다. 위치 측정은 2개의 홀센서를 사용한다. 이 방식은 엔코더 출력 펄스 신호 대신에 2개의 홀센서에서 발생되는 구형파 신호를 4체배하여 이동자의 속도와 위치를 추정한다. 구형파를 발생시키는 2개의 홀센서로 PMLSM의 벡터제어를 구현하였을 때 정격속도 범위 내에서 안정적이고 효율적으로 제어되는 것을 시뮬레이션을 통하여 입증하였다. 또 하드웨어 실험으로 시스템의 위치제어성능은 $30{\sim}50{\mu}m$의 측정범위 내에서 $10{\sim}20{\mu}m$의 정밀도로 기존시스템보다 2배나 개선되며, 경제적 효율성과 제안된 위치제어 개념의 실용적인 유용성도 확인하였다. 2개의 홀센서를 이용한 벡터제어는 협소한 공간에도 취부 할 수 있으므로 엔코더나 레졸버의 장착이 어려운 시스템에 적용될 수 있다.

퍼지 PI를 이용한 배수갑문용 유압실린더 제어기 설계 (Design of Control System for Hydraulic Cylinders of a Sluice Gate Using Fuzzy PI Algorithm)

  • 혜무은;최철희;최병재;홍춘표;류석환;권영태
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.109-115
    • /
    • 2010
  • 수문 제어의 주요기술은 두 개의 실린더가 하나의 수문을 동시에 10[m] 이상 들어 올리는 행정 동안 정밀하게 제어되도록 하여 동기 작동 시키는 것이다. 실린더에 공급되는 유량 및 압력이 일정하지 않으며, 실린더 피스톤의 비선형적인 마찰력에 의해 두 개의 실린더 위치 오차가 발생하게 되면 수문의 개폐 시 비틀림 현상을 야기 시켜서 수문의 마모를 발생시키고, 수문의 개폐작동 불능 현상을 만들기도 한다. 배수갑문용 유압실린더의 위치 및 동기 제어기를 설계하기 위하여 fuzzy PI 제어기를 이용하여 두 개의 실린더의 위치 및 동기제어기를 설계하고, 시뮬레이션을 통해 효용성을 제시한다.

블로워용 IE3 유도전동기 대체 IE4 동기 릴럭턴스 전동기 고효율 설계 연구 (Study on the High Efficiency Design of IE4 Synchronous Reluctance Motor Replacing IE3 Induction Motor)

  • 유회총;김인건;정제명;이주
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.411-418
    • /
    • 2016
  • In accordance with global energy conservation policies such as MEPS(Minimum Energy Performance Standard), electric motor industry is moving to super-high-efficiency machines and research to develop IE4 (International Energy Efficiency Class4) motors has been launched. In this situation, SynRM (Synchronous Reluctance Motor) has been attracting attention in place of induction motor which hardly provides super premium efficiency. As a result, much research on SynRM is being performed at home and abroad. Also, some products have already been appearing in the market. Compared to induction motor, SynRM has better efficiency per unit area and wider operating range. Although the utilization of control system in synchronous motor results in higher prices, we still need to concentrate on developments of SynRM so as to comply with the new policies. This study demonstrated the electromagnetic design methods of super-premium SynRM while maintaining the frame of existing IE3 induction motor for blower. We documented the design procedures for generating high saliency which is the most essential and mechanical stress analysis is also treated. In conclusion, we proved the validity of our design by manufacturing and testing our SynRM models.

외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구 (A Study on Robust and Precise Position Control of PMSM under Disturbance Variation)

  • 이익선;여원석;정성철;박건호;고종선
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.