• 제목/요약/키워드: Synchronous motor drives

검색결과 158건 처리시간 0.023초

직접토크제어를 이용한 영구자석 동기전동기의 새로운 센서리스 속도제어 (A new sensorless speed control method for permanent magnet synchronous motor using direct torque control)

  • 오세진;김종수;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.653-658
    • /
    • 2013
  • 본 논문은 직접토크제어를 이용한 영구자석 동기전동기의 새로운 센서리스 속도제어에 관해 기술한다. 직접토크제어는 토크 응답이 빠르며 벡터제어 드라이브에 비해 하드웨어가 단순하고 적은 비용으로 시스템을 구성할 수 있다. 본 논문에서는 동기전동기의 센서리스 속도제어를 위해 전류오차보상법을 사용하였다. 이 제어법은 실제 전동기 및 수식모델 전동기의 두 고정자 전류가 똑같아 지도록 제어된 전압을 전동기에 인가하여 전동기의 속도를 제어하는 방법이다. 본 논문의 방법은 제어기 구성이 간단하며 PI 제어기도 필요 없는 독특한 제어를 수행할 수 있다. 본 논문에서 제안하는 속도제어법의 검증을 위해 컴퓨터 모의실험을 실시하였으며 모의실험 결과 저속 및 고속에서 양호한 속도특성 및 부하 특성을 확인하였다.

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.

Control of Electrically Excited Synchronous Motors with a Low Switching Frequency

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng;Fu, Xiao
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.615-622
    • /
    • 2012
  • The switching frequency of the power electronic devices used in large synchronous motor drives is usually kept low (less than 1 kHz) to reduce the switching losses and to improve the converter power capability. However, this results in a couple of problems, e.g. an increase in the harmonic components of the stator current, and an undesired cross-coupling between the magnetization current component ($i_m$) and the torque component ($i_t$). In this paper, a novel complex matrix model of electrically excited synchronous motors (EESM) was established with a new control scheme for coping with the low switching frequency issues. First, a hybrid observer was proposed to identify the instantaneous fundamental component of the stator current, which results in an obvious reduction of both the total harmonic distortion (THD) and the low order harmonics. Then, a novel complex current controller was designed to realize the decoupling between $i_m$ and $i_t$. Simulation and experimental results verify the effectiveness of this novel control system for EESM drives.

ANN의 속도 추정에 의한 SynRM의 효율 최적화 제어 (Efficiency Optimization Control of SynRM with ANN Speed Estimation)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • 제55권3호
    • /
    • pp.133-140
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor(SynRM) which minimizes the copper and iron losses. Also, this paper presents a speed estimated control scheme of SynRM using artificial neural network(ANN). There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of ANN is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

Voltage Angle Control of Surface Permanent Magnet Synchronous Motor for Low-Cost Applications

  • Lee, Kwang-Woon;Kim, Guechol
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.716-722
    • /
    • 2018
  • This paper presents a voltage angle control strategy for surface permanent magnet synchronous motor (SPMSM) drives used in low-cost applications, wherein a current vector control is not employed. In the proposed method, the current vector control scheme, which requires high precision phase-current sensing units and a fast calculation capability of a motor drive controller, is replaced with the voltage angle controller. The proposed voltage angle controller calculates a d-axis voltage command to make the d-axis current zero by using a simple equation obtained from the voltage equation of SPMSM. The proposed method shows performance similar to the current vector controlled SPMSM drive during steady-states and its structure is very simple and thus it can be easily implemented with a low-cost microcontroller. The effectiveness of the proposed method is verified through simulations and experiments.

직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템 (A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회
    • 전기학회논문지P
    • /
    • 제51권2호
    • /
    • pp.68-76
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance control system of Reluctance Synchronous Motor (RSM) drives for an industrial servo system with direct torque control (DTC). The problems of DTC for high-dynamic performance and maximum efficiency RSM drives are the nonlinear variable flux and inductance due to a saturated stator linkage flux and nonlinear inductance curve with various load currents. The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance Ld and Lq can be compensated by using the adapted neural network from measuring the modulus and angle of the stator current. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing Ids=Iqs. This control strategy is proposed to fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, we have some actual experimental system using 6000 pulse/rev encoder at ${\pm}10$ and ${\pm}1500rpm$. The developed digitally high-performance control system are shown some good response characteristics of control results and high performance features using 1.0kW RSM of which has 2.57 Ld/Lq salient ratio.

이득 감쇠 및 위상 지연 보상 LPF를 이용한 PMSM의 전류 제어 성능 개선 (Performance Improvement of PMSM Current Control using Gain Attenuation and Phase Delay Compensated LPF)

  • 김민주;최진철;이우택
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.107-114
    • /
    • 2014
  • This paper applies a compensated low pass filter (LPF) to current measurements for permanent magnet synchronous motor (PMSM) drives. The noise limits the bandwidth of current controllers and has more adverse influences on control performances under the light load condition because of the low signal-to-noise ratio. In order to eliminate the noise sensitivity, this paper proposes a digital LPF with a compensator of gain attenuation and phase delay which are unacceptable in current information for PMSM drives. Characteristics of the proposed LPF are analyzed in comparison with the general LPFs. The compensated LPF is basically designed by the orthogonal property of the measured currents in the ${\alpha}{\beta}$ stationary reference frame. In addition, an implementation issue of the proposed method is discussed. Experimental results using the proposed method show improvements of the current control performance from two perspectives, rapid step responses and reductions of harmonic distortion.

직접토크제어에 의한 위치검출기 없는 릴럭턴스 동기전동기의 위치 제어시스템 (A High-Performance Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김동희;김민회;김남훈;배원식
    • 전력전자학회논문지
    • /
    • 제7권5호
    • /
    • pp.427-436
    • /
    • 2002
  • 본 논문은 직접토크제어(Direct torque control, DTC)를 사용한 릴럭턴스 동기전동기(Reluctance synchronous motor, RSM)의 위치센서 없는 모션제어 시스템을 제안한다. 고성능 효율제어를 수행하는데 있어서 DTC를 이용한 릴럭턴스 전동기 드라이브는 고정자 쇄교자속의 포화와 부하전류에 따라 비선형적으로 변하는 인덕턴스로 인해 여러 가지 문제점들이 발생한다. 이러한 이유로 본 논문에서는 정확한 고정자 쇄교자속과 토크를 계산하기 위해서 자속관측기의 $L_d\;와\; L_q$값을 회전자 위치와 고정자 전류에 대해 보상하였으며, 빠른 토크 응답특성과 최적 효율특성을 얻기 위해서 기준자속을 부하에 따라 계산하였다. 제안된 알고리즘의 정당성을 확인하기 위해서 1.0[kW] 릴럭턴스 동기 전동기를 사용하여 $\pm$20[rpm]과 $\pm$1500[rpm]에서 실험을 수행하였고, 실험을 수행한 결과 저속영역과 고속영역 모두 우수한 동특성과 향상된 효율을 얻을 수 있었다.

고성능 영구자석 동기전동기 운전을 위한 영위상오차 속도제어기의 구현 (Development of the Zero-Phase-Error Speed Controller for High Performance PMSM Drives)

  • 김준석
    • 전력전자학회논문지
    • /
    • 제19권2호
    • /
    • pp.184-193
    • /
    • 2014
  • This paper presents a high performance ZPE(zero-phase-error) speed controller for PMSM(permanent magnet synchronous motor) drives. A comparison study between conventional general purpose speed controller in modern industry fields such as PI, IP and 2-degree of freedom controller presented also. The proposed ZPE speed controller is found suitable for vector controlled PMSM drives in giving the high level of performance while maintaining the excellent response at the time of speed command changing. In MATLAB-based comparative simulation and experiment results with commercial drive system, the proposed method shows a superior control performance compared with the conventional speed controller widely-used.

전동기 친화형 출력필터를 이용한 영구자석 동기전동기의 센서리스 구동 성능 향상 (Performance Improvement of Sensorless PMSM Drives using Motor Friendly Output Filter)

  • 부한영;백승훈;한상훈;조영훈
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.329-332
    • /
    • 2020
  • A back-electromotive force (back-EMF) estimator for a permanent magnet synchronous motor (PMSM) uses the three-phase voltage references of a current controller to estimate rotor position. However, owing to voltage drops caused by the nonlinear characteristics of switches and passive components, the actual voltage in the motor and the three-phase voltage reference may not match. This study proposes a sensorless control method using a sine-wave output filter applied between the motor drive system and PMSM. The precise voltage in the motor can be measured with the sine-wave output filter and applied to the input of the estimator. Moreover, given that the voltage in the motor can be measured precisely at extremely low speeds, the stable operation range of the back-EMF estimator can be secured. Experimental results show that the proposed sensorless control method has stable operation at extremely low speeds compared with conventional sensorless control.