• Title/Summary/Keyword: Synchronous error

Search Result 344, Processing Time 0.032 seconds

Analysis of Estimation Errors in Rotor Position for a Sensorless Control System Using a PMSM

  • Park, Yong-Soon;Sul, Seung-Ki;Ji, Jun-Keun;Park, Young-Jae
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.748-757
    • /
    • 2012
  • In a sensorless control system with a Permanent Magnet Synchronous Motor (PMSM), the angular position of the rotor flux can be estimated by a voltage equation. However, the estimated angle may be inaccurate due to various causes. In this paper, it was comprehensively analyzed how various causes affect the angle error. As a result of the analysis, an error equation intuitively describing these relationships was derived. The parameter errors of a PMSM and the non-ideal properties of the driving system were identified as error-causing factors. To demonstrate the validity of the error equation, PMSMs were tested at various operating points. The variations in angle errors could be well explained with the error equation.

Capacity of synchronous DS-CDMA system on frequency selective multipath fading channels with imperfect power control (주파수 선택적 다중 경로 페이딩 채널에서 불완전 전력 제어를 고려한 동기식 DS-CDMA 시스템의 수용 용량)

  • 황승훈;김용석;김동희;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.342-350
    • /
    • 2000
  • In this paper, the bit error performance for the reverse link of a synchronous direct sequence code division multiple access (DS-CDMA) system employing an imperfect power control scheme over a frequency selective Rayleigh fading channel is analyzed. The system capacity degradation due to power control error (PCE), which is approximated by a log-normally distributed random variable, is estimate as a function of a standard deviation of the PCE. In addition, the impact of the multipath intensity profile (MIP) shape and the number of resolvable paths on the performance of the synchronous transmission is investigated. To estimate the system capacity, the coded bit error performance is evaluated and compared with the conventional CDMA. It is found tat synchronous transmission has less sensitivity to imperfect power control and eases the power control requirements. In particular, as the decay constant $\delta$ of MIP increases, the synchronous transmission in the DS-CDMA reverse link results in a significant BER improvement over the asynchronous transmission even in the presence of imperfect power control. We further conclude that the capacity can be improved by employing the synchronous transmission.

  • PDF

The Improvement of the Synchronous Genertor Excitor performance for Power Fire Plant (화력발전소의 동기발전기 여자기 성능개선 연구)

  • Hong, Hyun-Mun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.998-998
    • /
    • 2008
  • It is difficult to find for analysis solution of the synchronous generator exciter system. Recently, it had good performance UPS converter system using CRA method. The single converter of synchronous generator excitor system under considerations : (i) the overall system shall keep very low AC-voltage tracking error as well as no phase delay over different load condition, and (ii) the digital controller shall be employed at a fixed sampling. It is shown that the synchronous exciter system can be achieved by the proposed controller using Characteristic Ratio Assignment.

  • PDF

The Improvement Output of the Synchronous Generator Excitor using CRA control method (CRA 제어기법을 이용한 동기발전기 여자기의 출력 개선)

  • Hong, Hyun-Mun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.449-450
    • /
    • 2008
  • It is difficult to find for analysis solution of the synchronous generator exciter system. Recently, it had good performence UPS converter system using CRA method. The single converter of synchronous generator excitor system under considerations : (i) the overall system shall keep very low AC-voltage tracking error as well as no phase delay over different load condition, and (ii) the digital controller shall be employed at a fixed sampling. It is shown that the synchronous exciter system can be achieved by the proposed controller using Characteristic Ratio Assignment.

  • PDF

Influence of Resistance Error to the Bandwidth of Back-EMF Estimation based SMPMSM Sensorless Drives (역기전력 추정 기반 SMPMSM 센서리스 드라이브에서 저항 오차가 대역폭에 미치는 영향)

  • Kim, Jae-Suk;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.418-426
    • /
    • 2016
  • This paper analyzes the effect of resistance error to the performance of sensorless drive system of surface-mounted permanent magnet synchronous machine (SMPMSM) based on the back-EMF observer. The analysis shows that the bandwidth of the entire sensorless drive system decreased in the low-speed region when using smaller resistance value than the actual one in the back-EMF observer. Even if the back-EMF observer invokes estimation error, the entire sensorless drive system does not make any steady-state position error. These characteristics may have positive effects such as extension of the low speed limit that goes further down in the sensorless drive. The validity of the analysis is verified by the experimental setup comprising the MG set.

Analysis of Phase Error Effects Due to Grid Frequency Variation of SRF-PLL Based on APF

  • Seong, Ui-Seok;Hwang, Seon-Hwan
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2016
  • This paper proposes a compensation algorithm for reducing a specific ripple component on synchronous reference frame phase locked loop (SRF-PLL) in grid-tied single-phase inverters. In general, SRF-PLL, which is based on all-pass filter to generate virtual voltage, is widely used to estimate the grid phase angle in a single-phase system. In reality, the estimated grid phase angle might be distorted because the phase difference between actual and virtual voltages is not 90 degrees. That is, the phase error is caused by the difference between cut-off frequency of all-pass filter and grid frequency under grid frequency variation. Therefore, the effects on phase angle and output current attributed to the phase error are mathematically analyzed in this paper. In addition, the proportional resonant (PR) controller is adapted to reduce the effects of phase error. The validity of the proposed algorithm is verified through several simulations and experiments.

A new sensorless speed control method for permanent magnet synchronous motor using direct torque control (직접토크제어를 이용한 영구자석 동기전동기의 새로운 센서리스 속도제어)

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.653-658
    • /
    • 2013
  • This paper describes a new sensorless speed control method for permanent magnet synchronous motor(PMSM) using direct torque control(DTC). The direct torque control offers fast torque response, lesser hardware and processing costs as compared to vector controlled drives. In this paper the current error compensation technique is applied for sensorless speed control of synchronous motor. Through this method, the controlled stator voltage is applied to the synchronous motor so that the error between stator currents of the mathematical model and the actual motor can be forced to decay to zero as time proceeds and therefore, the motor speed approaches to the setting value. Especially, any PI controllers are not necessary in this control method. The simulation results indicate good speed and load responses from the low speed range to the high.

A Study on Synchronization Control Technique of Dual-Servo Press System (듀얼 서보모터 구동형 프레스 시스템의 동기화 제어기법 연구)

  • Na, Sang-Gun;Kwon, O-Shin;Kang, Jae-Hoon;Heo, Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.206-215
    • /
    • 2013
  • In this paper, a synchronization control technique of dual-servo motor driven press system is proposed. An independent cascade PID control technique has been applied to the conventional press system for advancement of control stability. However, it is not easy to reduce synchronous error using the independent cascade PID control technique when some different load disturbances are involved in each motor. The eccentric error of the slide caused by the problem degrade the control performance of the BDC(Bottom Dead Center). In order to achieve reduction of the synchronous error between two servo motors and accurate position control simultaneously, a new control scheme comprised with cascade PID control loop and cross-coupling loop is proposed. In simulation using Matlab SIMULINK, the AC servo system is designed. The control performance of proposed technique is compared with conventional control technique to the model of AC servo system. Also, the sub-scale model of dual-servo motor driven press system which can replicate the slide motion is constructed for experimental verification for the performance of the proposed control technique. The cross-coupling control technique reveals more precise and stable performances in the position and synchronization controls.

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.

Position Control of Linear Synchronous Motor by Dual Learning (이중 학습에 의한 선형동기모터의 위치제어)

  • Park, Jung-Il;Suh, Sung-Ho;Ulugbek, Umirov
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • This paper proposes PID and RIC (Robust Internal-loop Compensator) based motion controller using dual learning algorithm for position control of linear synchronous motor respectively. Its gains are auto-tuned by using two learning algorithms, reinforcement learning and neural network. The feedback controller gains are tuned by reinforcement learning, and then the feedforward controller gains are tuned by neural network. Experiments prove the validity of dual learning algorithm. The RIC controller has better performance than does the PID-feedforward controller in reducing tracking error and disturbance rejection. Neural network shows its ability to decrease tracking error and to reject disturbance in the stop range of the target position and home.