• Title/Summary/Keyword: Synchronous Vibration

Search Result 140, Processing Time 0.038 seconds

A Vibration Rejection of Linear Feeder System with PMSM using Adaptive Notch Filter (적응형 노치 필터에 의한 PMSM을 이용한 선형 피드 시스템의 진동 억제)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.274-283
    • /
    • 2006
  • The Permanent Magnet Synchronous Motor(PMSM) drive systems with ball-screw, gear and timing-belt are widely used in industrial applications such as NC machine, machine tools, robots and factory automation. These systems have torsional vibration in torque transmission from servo motor to mechanical load due to the mechanical couplings. This vibration makes it difficult to achieve quick responses of speed and may result in damage to the mechanical plant. This paper presents adaptive notch filter with auto searching function of vibration frequency to reject the mechanical vibration of linear feeder system with PMSM. The proposed adaptive notch filter can suppress the torque command signal of PMSM in the resonant bandwidth for reject the mechanical torsional vibration. However, the resonant frequency can vary with conditions of mechanical load system and coupling devices, adaptive notch filter can auto search the vibration frequency and suppress the vibration signal bandwidth. Computer simulation and experimental results shows the verification of the proposed adaptive notch filter in linear feeder system with PMSM.

Synchronous Periodic Frequency Modulation Based on Interleaving Technique to Reduce PWM Vibration Noise

  • Zhang, Wentao;Xu, Yongxiang;Ren, Jingwei;Su, Jianyong;Zou, Jibin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1515-1526
    • /
    • 2019
  • Ear-piercing high-frequency noise from electromagnetic vibrations in motors has become unacceptable in sensitive environments, due to the application of pulse width modulation (PWM) and in consideration of switching losses. This paper proposed a synchronous periodic frequency modulation (SPFM) method based on the interleaving technique for paralleled three-phase voltage source inverters (VSIs) to eliminate PWM vibration noise. The proposed SPFM technique is able to effectively remove unpleasant high-frequency vibration noise as well as acoustic noise more effectively than the conventional periodic carrier frequency modulation (PCFM) and interleaving technique. It completely eliminates the vibration noise near odd-order carrier frequencies and reduces the PWM vibration noise near even-order carrier frequencies depending on the switching frequency variation range. Furthermore, the SPFM method is simple to implement and does not employ additional circuits in the drive system. Finally, the effectiveness of the proposed method has been confirmed by detailed experimental results.

Simulation and Experiment of Dynamic Torsional Vibration during Grid Low Voltage in a PMSG Wind Power Generation System (PMSG 풍력발전시스템에서 전원 저전압 발생시 비틀림 진동 동특성 시뮬레이션 및 실험)

  • Kwon, Sun-Hyung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2013
  • A wind generator system model includes wind model, rotor dynamics, synchronous generator, power converter, distribution line and infinite bus. This paper investigates the low-Voltage Ride-Through capability of PMSG wind turbine in a variable speed. The drive train of a wind turbine on 2-mass modeling can observe the shaft torsional vibration when the low-voltage occur. To reduce the torsional vibration when the low-voltage occur, this paper designs suppression control algorithm of the torsional vibration and implements simulation. The simulation based on MATLAB/SIMULINK has validated at the transient state of the PMSG and an experiment using 3kW simulator has validated the LVRT control.

Vibration Characteristics Analysis of Surface-mounted Permanent Magnet Synchronous Motor (표면부착형 영구자석 동기전동기의 진동 특성 해석)

  • Choi, Jang-Young;Park, Hyung-Il;Shin, Hyeon-Jae;You, Dae-Joon;Jang, Seok-Myeong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1083-1084
    • /
    • 2011
  • This paper deals with the vibration characteristics analysis of surface-mounted permanent magnet synchronous motor. To analyze the vibration characteristics, In order to find the frequency of exciting vibration forces, torque ripple and radial force were analyzed by fast fourier transform (FFT), and stator were analyzed by modal analysis.

  • PDF

Synchronous motor vibration study on permanent magenet matter (영구자석 재질에 따른 동기전동기의 진동에 관한 연구)

  • Cho, Wan-Jin;Sun, Tao;Kim, Young-Kyun;Rhyu, Se-Hyun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.879_880
    • /
    • 2009
  • this paper studies the influence of permanent magnet on the vibration of synchronous motor two PM motors with NdFeB and Ferrite magents which have same Back-EMF and output power have been desined. First, the dynamic simulation is performed with these two motors' parameters. The current waveforms can be evaluated. And then based on the equivalent magnetization current principle, the magnetic force density and force including the tangential and radial direction components can be calculated. According to the relationship between the vibration and radial force, the vibration of these two motors can be predicted. This result will give meaningful advice to the motor design.

  • PDF

Efffects of Synchronous Vibration of Bearing on Stability of Externally Pressurized Air Journal Bearing (베어링의 동기 진동이 외부 가압 공기 저어널 베어링의 안정성에 미치는 영향)

  • Lee, Jeong-Bae;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 1997
  • Results of theoretical investigations of the stability characteristics of externally pressurized air journal bearing, of which bearing is synchronously vibrate with respect to rotor, are presented. Linearized perturbation method is used to get the dynamic coefficients of air bearing, and the Routh-Hurwitz criterion is used to obtain stability map. The stability characteristics operating at zero steady-state eccentricity is investigated of various phase difference of bearing to rotor. It is shown that stability of air bearing is greatly influenced by synchronous motion of bearing, there exists optimum phase difference which gives maximum stability threshold.

Experimental Verification of Compressor Blade Aeromechanics (압축기 블레이드 Aeromechanics의 시험적 검증)

  • Choi, Yun Hyuk;Park, Hee Yong;Kim, Jee Soo;Shin, Dong Ick;Choi, Jae Ho;Kim, Yeong Ryeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.240-244
    • /
    • 2017
  • Experimental verification in the rig test stage for component development is a vital link between the aeromechanical design and structural integrity validation process. Based on this premise, Non-Intrusive Stress Measuring System was adopted on the axial compressor test rig to measure the static and dynamic tip deflection of all blades by using tip-timing sensors. Through analyzing vibration characteristics, we evaluated the vibratory stresses seen on the blades fatigue critical location; detected synchronous resonances which are the source of High Cycle Fatigue (HCF) in blades; presented non-synchronous vibration response by aerodynamic excitation and individual blade mis-tuning patterns.

  • PDF

Study on Machine Characteristics in Interior Permanent Magnet Synchronous Motor According to Pole/Slot Combinations with Radial Vibration Force Consideration (극수/슬롯수 조합에 따른 Radial Vibration Force 고려한 매입자석 동기모터 특성 연구)

  • Fang, Liang;Lee, Su-Jin;Lee, Byeong-Hwa;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.949-954
    • /
    • 2011
  • This paper presents a comparative study on motor characteristics with specific consideration of radial vibration force in interior permanent magnet synchronous motors (IPMSM) according to pole/slot combinations. Three IPMSM models, 16-pole/15-slot design, 16-pole/18-slot design and 16-pole/24-slot design are built, in which 16-pole/15-slot and 16-pole/18-slot designs provide high winding factor and 16-pole/24-slot design is known as a general pole/slot combination. By coupling finite element analysis (FEA) with equivalent circuit method, motor characteristics, back electro-motive force (Back-EMF), inductances, cogging torque, etc. as well as machine output performances are analyzed and compared. The radial vibration force (RVF) distribution in air gap causing stator vibration and noise is interested. It is expected that this study help with appropriate choice of pole/slot combination in IPMSM design.