• 제목/요약/키워드: Synchronous Permanent Magnet Motor

검색결과 1,224건 처리시간 0.024초

Performance Evaluation of Slotless Permanent Magnet Linear Synchronous Motor Energized by Partially Excited Primary Current

  • Jung, Sang-Yong;Chun, Jang-Sung;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권3호
    • /
    • pp.86-92
    • /
    • 2001
  • This paper is presented for evaluating the performance of slotless Permanent Magnet Linear Synchronous Motors (PMLSM) Which is energized by partially excited primary current. Especially the influence of end-effect due to the moving magnet is investigated in detail. Also partial excitation of primary current for better efficiency and its switching behavior are suggested Capability of PMLSM which is related to speed-force feasibility judging whether motor can meet the desired specifications in the dynamics are investigated. Furthermore control characteristics of PMLSM are considered to verify the validity of dynamic capability in running condition.

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.

An Adaptive Dead-time Compensation Strategy for a Permanent Magnet Synchronous Motor Drive Using Neural Network

  • Urasaki Naomitsu;Senjyu Tomonobu;Funabashi Toshihisa;Sekine Hideomi
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.279-289
    • /
    • 2006
  • This paper presents a neural network based adaptive dead-time compensation strategy for an inverter fed permanent magnet synchronous motor drive. The neural network is used for identifying the dead-time compensation time (DTCT) that includes an equivalent dead-time, turn-on/off time and on-state voltage components of the voltage source inverter. In order to train the neural network, desired DTCTs for eight operating points are prepared as training data. The trained neural network can identify a desired DTCT for any operating point because it has the capability of the interpolation. The accuracy of the identified DTCT is experimentally confirmed by comparing the calculated active power with a measured one.

Adaptive Control of Permanent Magnet Linear Synchronous Motor using Wavelet Transform

  • Lee, June;Lee, Jin-Woo;;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.63-67
    • /
    • 2004
  • The problem is improving the positioning precision of a permanent magnet linear synchronous motor (PMLSM). Thus, this paper presents the design and realization of an adaptive dither to reduce the force ripple in PMLSM. A composite control structure is used, consisting of three components: a simple feed-forward component, a PID feedback component and an adaptive feed-forward compensator (AFC). Especially adaptive feed-forward component cancel out detent force using wavelet transformation. Computer simulation results verify the effectiveness of the proposed scheme for high precision motion trajectory tracking using the PMLSM

  • PDF

Simple Sensorless Control of Interior Permanent Magnet Synchronous Motor Using PLL Based on Extended EMF

  • Han, Dong Yeob;Cho, Yongsoo;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.711-717
    • /
    • 2017
  • This paper proposes an improved sensorless control to estimate the rotor position of an interior permanent magnet synchronous motor. A phase-locked loop (PLL) is used to obtain the phase angle of the grid. The rotor position can be estimated using a PLL based on extended electromotive force (EEMF) because the EEMF contains information about the rotor position. The proposed method can reduce the burden of calculation. Therefore, the control period is decreased. The simulation and experimental results confirm the effectiveness and performance of the proposed method.

Experimental Evaluation on Power Loss of Coreless Double-side Permanent Magnet Synchronous Motor/Generator Applied to Flywheel Energy Storage System

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.256-261
    • /
    • 2017
  • This paper deals with the experimental evaluation on power loss of a double-side permanent magnet synchronous motor/generator (DPMSM/G) applied to a flywheel energy storage system (FESS). Power loss is one of the most important problems in the FESS, which supplies the electrical energy from the mechanical rotation energy, because the power loss decreases the efficiency of energy storage and conversion of capability FESS. In this paper, the power losses of coreless DPMSM/G are separated by the mechanical and rotor eddy current losses in each operating mode. Moreover, the rotor eddy current loss is calculated by the 3-D finite element analysis (FEA) method. The analysis result is validated by separating the power loss as electromagnetic loss and mechanical loss by a spin up/down test.

철손을 고려한 단상 영구자석형 유도동기기의 특성해석 (Characteristic Analysis of Single-phase Line-start Permanent Magnet Synchronous Motor Considering Iron Loss)

  • 남혁;강규홍;홍정표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권5호
    • /
    • pp.295-304
    • /
    • 2004
  • This paper deals with characteristic analysis method using d-q axis equivalent circuit considering iron loss in a single-phase line-start permanent magnet synchronous motor. The iron loss resistance to account for the iron loss is included in the equivalent circuit to improve the modeling accuracy. Furthermore, for the improved calculation of the iron loss, the iron loss is calculated from the magnetic flux density by 2-dimensional finite element method. The result is represented as the iron loss resistance and connected in parallel with the total induced voltage. Therefore, the currents can be expressed as the summation the output current with the current corresponding to the iron loss. Finally, the steady state characteristic analysis results are compared with the experimental results to verify this approach.

Sensorless Speed Control of Permanent Magnet Synchronous Motor by Unscented Kalman Filter using Various Scaling Parameters

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.347-352
    • /
    • 2016
  • This paper investigates the application, design and implementation of unscented Kalman filter observer using the various scaling parameters for the sensorless speed control of a permanent magnet synchronous motor. The principles of unscented transformation and unscented Kalman filter are examined and their applications are explained. Typically the mapping transformation process is divided into two types, namely the basic unscented transformation and the general unscented transformation by virtue of the scaling parameter value. And resultantly, the number of sampling points, weights, code configuration and computation time are different. But there is no little information on the scaling parameter value or how this value influences the system performance. To analyze the unscented transformation with the various scaling parameters in this study, the experimental results under a wide range of operation condition have been demonstrated.

Voltage Vector Selection Area of the Direct Torque Control for Permanent Magnet Synchronous Motor

  • Li, Yaohua;Ma, Jian;Yu, Qiang;Liu, Jingyu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.23-29
    • /
    • 2012
  • The control of stator flux, torque angle, excitation torque, reluctance torque and total torque of the direct torque control (DTC) for a permanent magnet synchronous motor (PMSM) are studied in this paper. Simplified expressions to represent the changes of these variables due to the application of a voltage vector are given. Finally, a voltage vector selection area and the implementation of a voltage vector selection strategy are proposed.

Influence of Cogging Torque Reduction Method on Torque Ripple in a Surface-Mounted Permanent Magnet Synchronous Motor

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of Magnetics
    • /
    • 제17권2호
    • /
    • pp.109-114
    • /
    • 2012
  • The torque characteristics of a surface-mounted permanent magnet synchronous motor (SPMSM) are analyzed in this study. The harmonics of the back electromotive force (EMF) and cogging torque are analyzed by the finite element method to study their effects on the torque ripple. Although low cogging torque can be achieved by varying geometric parameters such as the permanent magnet (PM) offset and notch depth on the stator teeth, the torque ripple is increased in some cases. The analysis results show that the ripple of the generated torque is determined by not only the amplitudes but also the phases of harmonics for the back EMF and cogging torque.