• 제목/요약/키워드: Synchronous Motion Control

검색결과 69건 처리시간 0.03초

고층건물 시공자동화를 위한 다중 클라이밍 유압로봇의 운동 동기제어 (Synchronous Motion Control of Multi-Climbing Hydraulic Robots for High-Rise Building Construction Automation)

  • 홍윤석;장효환
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.103-111
    • /
    • 2009
  • Multi-climbing hydraulic robots are used to lift construction factory (CF) synchronously for applications in the automation of a high-rise building construction. In this study, synchronous motion controller is proposed for the hydraulic robots, whose strategy is not only to make each robot follow the reference path basically by sliding-mode control, but also to synchronize motions of two adjacent cent robots consecutively by cross-coupled control technique. Simulations are performed by using SIMULINK for a system similar to a practical application that includes unbalance in CF and wind disturbance. The results show that the proposed controller significantly reduces synchronous errors, compared to the individual controller for each hydraulic robot.

직접 토크제어에 의한 리럭턴스 동기전동기의 위치제어 시스템 (A Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;최경호;김동희;이상호;황돈하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 추계학술대회 논문집
    • /
    • pp.23-26
    • /
    • 2001
  • This paper presents a digital motion control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consists of stator flux observer, torque estimator: two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter(VSI), and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control of which inputs are current, voltage and actual rotor angle for wide speed range. In order to prove the suggested motion control algorithm, There are some simulation and testing at actual experimental system. The developed digitally high-performance motion control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

Improved Nonlinear Speed Control of PM Synchronous Motor Using Time Delay Control

  • Baik, In-Cheol
    • Journal of Power Electronics
    • /
    • 제3권3호
    • /
    • pp.197-204
    • /
    • 2003
  • An improved nonlinear speed control of a permanent magnet synchronous motor (PMSM) is presented A quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived Using this model, to overcome the drawbacks of conventional nonlinear control scheme, the improved nonlinear control scheme which employs time delay control (TDC) scheme is proposed. To show the validity of the proposed control scheme, simulation studies are carried out and compared with the conventional control scheme.

직접토크제어에 의한 리럭턴스 동기전동기의 고성능 위치제어 시스템 (A High-Performance Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;최경호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권3호
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents preliminarily an implementation of digital high-performance motion control system of Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320F240 DSP controller made by Texas Instruments. The stator fluff observer is based on the combined voltage and current model with stator flux feedback adaptive control, and the input of the observer are the stator voltage and current of motor terminal for wide speed range. The rotor position and speed sensor used 6000 pulse/rev encoder. In order to prove rightness of the suggested control algorithm, we have some simulation and actual experimental system at $\pm$20 and $\pm$2000 rpm. The developed digitally high-performance motion control system+ are shown a good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.

직접토크제어에 의한 위치검출기 없는 릴럭턴스 동기전동기의 위치 제어시스템 (A High-Performance Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김동희;김민회;김남훈;배원식
    • 전력전자학회논문지
    • /
    • 제7권5호
    • /
    • pp.427-436
    • /
    • 2002
  • 본 논문은 직접토크제어(Direct torque control, DTC)를 사용한 릴럭턴스 동기전동기(Reluctance synchronous motor, RSM)의 위치센서 없는 모션제어 시스템을 제안한다. 고성능 효율제어를 수행하는데 있어서 DTC를 이용한 릴럭턴스 전동기 드라이브는 고정자 쇄교자속의 포화와 부하전류에 따라 비선형적으로 변하는 인덕턴스로 인해 여러 가지 문제점들이 발생한다. 이러한 이유로 본 논문에서는 정확한 고정자 쇄교자속과 토크를 계산하기 위해서 자속관측기의 $L_d\;와\; L_q$값을 회전자 위치와 고정자 전류에 대해 보상하였으며, 빠른 토크 응답특성과 최적 효율특성을 얻기 위해서 기준자속을 부하에 따라 계산하였다. 제안된 알고리즘의 정당성을 확인하기 위해서 1.0[kW] 릴럭턴스 동기 전동기를 사용하여 $\pm$20[rpm]과 $\pm$1500[rpm]에서 실험을 수행하였고, 실험을 수행한 결과 저속영역과 고속영역 모두 우수한 동특성과 향상된 효율을 얻을 수 있었다.

센서 통합 능력을 갖는 다중 로보트 제어 시스템의 개발 (Development of a multi-robot control system with sensor integrating capability)

  • 서일홍;현웅근;김태원;여희주;김재욱;윤승중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.1008-1013
    • /
    • 1992
  • 본 논문에서는 다중 로보느의 협조제어(Coordinated Control)를 위한 로보트 콘트롤러의 설계에 대해서 연구한다. 첫 부분에서는 다중 로보느의 연구배경 및 연구동기에 대해서 논의하고 이어서 Coordinated Task를 묘사하기 위한 Programming Primiitive Set을 정의하며 구현에 대해서도 논의한다. 특히 Motopn Primitive는 synchronous(Coordinated Motion), Asynchronous Motion, Conditional Motion, 특수 Motion으로 분류하고, 각각의 궤적계획 및 구현에 대해서도 간단히 논의한다. 특히 본 논문에서는 외부의 변화하는 환경에 효과적으로 적응할 수 있게 하기 위하여 Vision센서, Encoder신호와 Limit센서, Force센서 등의 다양한 외부 센서를 융합 처리할수 있는 다중 로보트 제어 시스템을 개발하였다.

  • PDF

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

협조제어에 의한 2축 연속 회전시스템의 고정도 위치동기 제어 (Precise Position Synchronous Control of Two Axes Rotating Systems by Cooperative Control)

  • 정석권;김영진;유삼상
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2078-2090
    • /
    • 2001
  • This paper deals with a precise position synchronous control by a cooperative control method of two axes rotating systems. First, the system's dynamics including motor drives described by a motor circuit equation and Newton's kinetic formulation about rotating system. Next, based on conventional PID(Proportional, Integral, Derivative) control law, current and speed controller are designed very simply to follow up reference speed correctly under some disturbances. Also, position synchronous controller designed to minimize position errors according to integration of speed errors between two motors. Then, the proposed control enables the distributed drives by a software control algorithm to behave in a way as if they are mechanically hard coupled in axes. Further, the stabilities and robustness or the proposed system are investigated. Finally, the proposed system presented here is shown to be more precise position synchronous motion than conventional systems through some simulations and experiments.

SMD Mounter용 선형 영구자석 동기기의 고정밀 위치제어 (High Resolution Position Control of Linear Permanent Magnet Synchronous Motor for SMD Placement System)

  • 김장환;설승기;전정렬;최연규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.314-316
    • /
    • 2001
  • This paper present the position control method for the application of permanent magnet linear synchronous motor. Controller is designed as a conventional P-PI controller, but the extra information is used such as velocity and acceleration from motion profiles. The profiles comes from S-Curve which is an optimized point-to-point motion profiles to achieve fast motions with minimum vibration[2]. In this application, the targets of the position control are maximum 10um position error within 10msec after respective ending point of position profiles. The implementation of the controller has been done in full digital way. All the controller is designed on the DSP TMS320VC33 control board. To prove performance of the controller, the experiment was performed with a servo linear motor.

  • PDF

가변구조제어기를 이용한 다중실린더 위치동조 제어 (Motion Synchronization of Control for Multi Electro-Hydraulic Actuators)

  • 김성훈;서정욱;윤영원;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.863-868
    • /
    • 2011
  • This paper presents a method to achieve a synchronous positioning objective for a dual-cylinder electro-hydraulic system with friction characteristics. The control system consists of a VSC (Variable Structure Controller) for each of the hydraulic cylinders and a PID (Proportional-Integral-Derivative) feedback controller. The PID controller is used for controlling the non-synchronous error generated by both cylinders when motion synchronization is carried out. To enhance the position-tracking performance of the individual cylinders friction characteristics is modeled in model, based on the estimated friction force. The simulation and experimental results show that the proposed method can effectively achieve the objective of position synchronization in the dualcylinder electro-hydraulic system, with maximum synchronization error with ${\pm}2\;mm$.