• Title/Summary/Keyword: Synchronous DC-DC Converter

Search Result 152, Processing Time 0.024 seconds

A Study on Open-frame Type DC-DC Converter Module for Low-Voltage High-Current Applications (저전압 대전류용 개방형 DC-DC 컨버터 모듈에 관한 연구)

  • 안태영;황선민;조인호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.183-190
    • /
    • 2003
  • We report the performance of an open-frame type low-voltage high-current DC-DC converter module developed using an active clamp forward converter circuit and current doubler rectifier. The converter module is designed with the specifications of an 1.8V output voltage, 25A output current, and 36-75V input voltage. The synchronous rectifier is used to reduce the conduction fuss at high current level and current-mode control is adapted to enhance the flexibility in the system configuration. A prototype converter module is successfully implemented within 10mm height and half brick size (58${\times}$61mm), and recorded an 84% efficiency and 4% voltage regulation for the entire input voltage range, thereby demonstrating its application potentials to future telecommunication electronics.

A Study on Open-frame Type DC-DC Converter Module for Low-Voltage High-Current Applications (저전압 대전류용 개방형 DC-DC 컨버터 모듈에 관한 연구)

  • 안태영;황선민;조인호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.183-183
    • /
    • 2003
  • We report the performance of an open-frame type low-voltage high-current DC-DC converter module developed using an active clamp forward converter circuit and current doubler rectifier. The converter module is designed with the specifications of an 1.8V output voltage, 25A output current, and 36-75V input voltage. The synchronous rectifier is used to reduce the conduction fuss at high current level and current-mode control is adapted to enhance the flexibility in the system configuration. A prototype converter module is successfully implemented within 10mm height and half brick size (58×61mm), and recorded an 84% efficiency and 4% voltage regulation for the entire input voltage range, thereby demonstrating its application potentials to future telecommunication electronics.

A study on the efficiency characteristics for LLC resonant half-bridge converter with synchronous rectifier (동기정류기를 적용한 공진형 하프브릿지의 효율특성에 관한연구)

  • Lee, Gwang-Taek;Ahn, Tae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.289-291
    • /
    • 2005
  • In this paper results of the experiment which used LLC resonant half bridge DC-DC converter to a portable electrical equipment. LLC resonance Half Bridge DC-DC converter which was used in this experiment improved an efficiency because it reduced switching, conduction losses and with synchronous rectifier. As a result of the experiment, this proposed converter could verified an increase of 2% to the efficiency more than diode rectifier.

  • PDF

2-stage 3-phase PWM AC/DC Converter for Unity Power Factor Drive of Synchronous Generator (단위역률동작을 위한 동기 발전기 여자 시스템용 2단 3상 PWM AC/DC 컨버터)

  • Lee, Sang-Hun;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.187-192
    • /
    • 2007
  • The terminal voltage of a synchronous generator is maintained by the field current control of excitation system Generally AC/DC converter which is component of AVR(Automatic Voltage Regulator) system for excitation current control is connected to diode rectifier and DC/DC converter system In the case of diode rectifier system of phase controlled converter, AC/DC converter has low power factor and some low order harmonics in the line current. In this paper, two-stage three-phase PWM AC/DC converter is studied to solve these problems, The proposed method is verified by the computer simulations and experimental results in prototype generation system.

  • PDF

A Study on Efficiency and Characteristic of Zero Voltage Switched Half-Bridge Converter and Forward Converter (영전압 스위칭 하프브리지 컨버터와 포워드 컨버터의 효율 및 특성에 관한 연구)

  • Seo, J.K.;Kim, Y.;Baek, S.H.;Kwon, S.D.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.147-149
    • /
    • 1998
  • In this paper, zero voltage switched half bridge converter and an active-clamped, zero voltage switched forward converter equipped with self-driven synchronous rectifier is designed and investigated for high efficiency BC-DC converter. A synchronous rectifier is has a lower conduction power loss than shottky diode rectifier. The purpose of this paper is to investigate the effect of parasitic inductance in a synchronous rectifier of DC-DC converters and examine overall efficiency of zero voltage switched DC-DC converters.

  • PDF

Design of a 2kW Bidirectional Synchronous DC-DC Converter for Battery Energy Storage System (배터리 에너지 저장장치용 고효율 2kW급 양방향 DC-DC 컨버터 설계)

  • Lee, Taeyeong;Cho, Byung-Geuk;Cho, Younghoon;Hong, Chanook;Lee, Han-Sol;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.312-323
    • /
    • 2017
  • This paper introduces the bidirectional dc-dc converter design case study, which employs silicon-carbide (SiC) MOSFETs for battery energy storage system (BESS). This converter topology is selected as bidirectional synchronous buck converter, which is composed of a half bridge converter, an inductor, and a capacitor, where the converter has less conduction loss than that of a unidirectional buck and boost converter, and to improve the converter efficiency, both the power stage design and power conversion architecture are described in detail. The conduction and switching losses are compared among three different SiC devices in this paper. In addition, the thermal analysis using Maxwell software of each switching device supports the loss analyses, in which both the 2 kW prototype analyses and experimental results show very good agreement.

A High Frequency-Link Bidirectional DC-DC Converter for Super Capacitor-Based Automotive Auxiliary Electric Power Systems

  • Mishima, Tomokazu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper presents a bidirectional DC-DC converter suitable for low-voltage super capacitor-based electric energy storage systems. The DC-DC converter presented here consists of a full-bridge circuit and a current-fed push-pull circuit with a high frequency (HF) transformer-link. In order to reduce the device-conduction losses due to the large current of the super capacitor as well as unnecessary ringing, synchronous rectification is employed in the super capacitor-charging mode. A wide range of voltage regulation between the battery and the super capacitor can be realized by employing a Phase-Shifting (PS) Pulse Width Modulation (PWM) scheme in the full-bridge circuit for the super capacitor charging mode as well as the overlapping PWM scheme of the gate signals to the active power devices in the push-pull circuit for the super capacitor discharging mode. Essential performance of the bidirectional DC-DC converter is demonstrated with simulation and experiment results, and the practical effectiveness of the DC-DC converter is discussed.

A 3 kW Bidirectional DC-DC Converter for Electric Vehicles

  • Ansari, Arsalan;Cheng, Puyang;Kim, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.860-868
    • /
    • 2016
  • A bidirectional DC-DC converter (BDC) is an indispensable electrical unit for the electric vehicles (EVs). High efficiency, high power density, isolation, light weight and reliability are all essential requirements for BDC. In this paper, a 3 kW BDC for the battery charger of EVs is proposed. The proposed converter consists of a half-bridge structure on the primary side and an isolation transformer and a synchronous rectifier structure on the secondary side. With this topology, minimum number of switching devices are required for bidirectional power flow between the two dc buses of EVs. The easy implementation of the synchronous rectification gives advantages in terms of efficiency, cost and flexibility. The proposed BDC achieves high efficiency when operating in both modes (step-up and step-down). A 3 kW prototype is implemented to verify theoretical analysis and the performance of the proposed converter.

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

AC/DC Converter Design of The Korean Type Multi-Propulsion System (한국형 다중추진시스템의 주전력변환기 설계)

  • Jho Jeong-Min;Jung Byung-Su;Cho Heung-Jae;Kim Su-Yong;Sung Ho-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.127-133
    • /
    • 2005
  • Korean multi-propulsion system consists of a synchronous alternator driven by a gas turbine driving synchronous alternator coupled to a rectifier - DC link - DC/DC converter and traction system based on modification of the G7 high-speed train. The simulation modules include turbine engine system, alternator, rectifier, DC/DC converter and power management module. Simulation for the multi-propulsion system such as a modular is presented in order to confirm the system stability for loads with uncertain input impedances and control loop speeds. This paper deals with various simulation modules with a specific control loop to help the development of the real lame-scaled system.