• Title/Summary/Keyword: Synchronous Controller

Search Result 652, Processing Time 0.025 seconds

Fast-Transient Repetitive Control Strategy for a Three-phase LCL Filter-based Shunt Active Power Filter

  • Zeng, Zheng;Yang, Jia-Qiang;Chen, Shi-Lan;Huang, Jin
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.392-401
    • /
    • 2014
  • A fast-transient repetitive control strategy for a three-phase shunt active power filter is presented in this study to improve dynamic performance without sacrificing steady-state accuracy. The proposed approach requires one-sixth of the fundamental period required by conventional repetitive control methods as the repetitive control time delay in the synchronous reference frames. Therefore, the proposed method allows the system to achieve a fast dynamic response, and the program occupies minimal storage space. A proportional-integral regulator is also added to the current control loop to eliminate arbitrary-order harmonics and ensure system stability under severe harmonic distortion conditions. The design process of the corrector in the fast-transient repetitive controller is also presented in detail. The LCL filter resonance problem is avoided by the appropriately designed corrector, which increases the margin of system stability and maintains the original compensation current tracking accuracy. Finally, experimental results are presented to verify the feasibility of the proposed strategy.

Dead Time Compensation of Stand-alone Inverter Under Unbalanced Load (불평형부하 시 독립형 인버터의 데드타임 보상기법)

  • Jeong, Jinyong;Jo, Jongmin;Lee, Junwon;Chae, Woo-Kyu;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • Stand-alone inverter supplies constant voltage to loads. However, when a three-phase stand-alone inverter supplies unbalanced load, the generated output voltages also become unbalanced. The nonlinear characteristics of inverter dead time cause a more serious distortion in the output voltage. With unbalanced load, voltage distortion caused by dead time differs from voltage distortion under balanced load. Phase voltages in the stationary reference frame include unbalanced odd harmonics and then, d-q axis voltages in the synchronous reference frame have even harmonics with different magnitude, which are mitigated by the proposed multiple resonant controller. This study analyzes the voltage distortion caused by unbalanced load and dead time, and proposes a novel dead time compensation method. The proposed control method is tested on a 10-kW stand-alone inverter system, and shows that total harmonic distortion (THD) is reduced to 1.5% from 4.3%.

Automatic Command Mode Transition Strategy of Direct Power Control for PMSG MV Offshore Wind Turbines (자동 지령모드절환 기능을 갖춘 PMSG MV 해상 풍력 발전기의 직접전력제어 방법)

  • Kwon, Gookmin;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.238-248
    • /
    • 2016
  • In this study, an automatic command mode transition strategy of direct power control (DPC) is proposed for permanent magnet synchronous generators (PMSGs) medium-voltage (MV) offshore wind turbines (WTs). Benchmarking against the control methods are performed based on a three-level neutral-point-clamped (NPC) back-to-back type voltage source converter (VSC). The ramping rate criterion of complex power is utilized to select the switching vector in DPC for a three-level NPC converter. With a grid command and an MPPT mode transition strategy, the proposed control method automatically controls the generated output power to satisfy a grid requirement from the hierarchical wind farm controller. The automatic command mode transition strategy of DPC is confirmed through PLECS simulations based on Matlab. The simulation result of the automatic mode transition strategy shows that the proposed control method of VOC and DPC achieves a much shorter transient time of generated output power than the conventional control methods of MPPT and VOC under a step response. The proposed control method helps provide a good dynamic performance for PMSGs MV offshore WTs, thereby generating high quality output power.

Performance Improvement of a PMSM Sensorless Control Algorithm Using a Stator Resistance Error Compensator in the Low Speed Region

  • Park, Nung-Seo;Jang, Min-Ho;Lee, Jee-Sang;Hong, Keum-Shik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.485-490
    • /
    • 2010
  • Sensorless control methods are generally used in motor control for home-appliances because of the material cost and manufactureing standard restrictions. The current model-based control algorithm is mainly used for PMSM sensorless control in the home-appliance industry. In this control method, the rotor position is estimated by using the d-axis and q-axis current errors between the real system and a motor model of the position estimator. As a result, the accuracy of the motor model parameters are critical in this control method. A mismatch of the PMSM parameters affects the speed and torque in low speed, steadystate responses. Rotor position errors are mainly caused by a mismatch of the stator resistance. In this paper, a stator resistance compensation algorithm is proposed to improve sensorless control performance. This algorithm is easy to implement and does not require a modification of the motor model or any special interruptions of the controller. The effectiveness of the proposed algorithm is verified through experimental results.

Fault Diagnosis Scheme for Open-Phase Fault of Permanent Magnet Synchronous Motor Drive using Extended Kalman Filter (영구자석 동기전동기 드라이브의 확장형 칼만필터를 이용한 개방성 고장진단 기법)

  • Ahn, Sung-Guk;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 2011
  • In this paper, the fault diagnosis scheme for PMSM drives has been proposed to maintain control performance under a switch open-phase fault of inverter. When the open-phase fault occurs, the stator resistances of PMSM are estimated by Extended Kalman Filter (EKF) in real time and can appear differently according to the location of fault occurrence to check the fault detection and identification. The control algorithm is configured without the additional device and low cost by adding the existing control program. Also, by using motor parameter the estimated stator resistance value improves the control performance of the controller affected by parameter variation. The feasibility of the proposed fault diagnosis algorithm is validated in simulation and experiment.

Improved FOC of IPMSM using Finite-state Model Predictive Current Control for EV

  • Won, Il-Kuen;Hwang, Jun-Ha;Kim, Do-Yun;Choo, Kyoung-Min;Lee, Soon-Ryung;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1851-1863
    • /
    • 2017
  • Interior permanent magnet synchronous motor (IPMSM) is most commonly used in the automotive industry as a traction motor for electric vehicle (EV). In electric vehicle, the torque output rapidly changes according to the operation of the accelerator and the braking of the driver. The transient torques are thus generated very frequently in accordance with the variable speed control of the driver. Therefore, in this paper, a method for improving the torque response in the transient states of IPMSM is proposed. In order to complement the disadvantages of the conventional PI current controller in the field oriented control (FOC), the finite-state model predictive current control and 2D-LUT is applied to improve the torque response at the torque transient period. Simulation and experiment results are given to verify the reliability of the proposed method.

Active Vibration Control System Using Electromagnet Actuator (전자기 액츄애이터를 이용한 능동 진동제어시스템)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Hwang, Don-Ha;Kang, Dong-Sik;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2809-2811
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF

Current Control in Cascaded H-bridge STATCOM for Electric Arc Furnaces (전기로용 다단 H-브릿지 STATCOM의 전류제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong;Kim, Yun-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • A static synchronous compensator (STATCOM) applied to rapidly changing, highly unbalanced loads such as electric arc furnaces (EAFs), requires both positive-sequence and negative-sequence current control, which indicates fast response characteristics and can be controlled independently. Furthermore, a delta-connected STATCOM with cascaded H-bridge configuration accompanying multiple separate DC-sides, should have high performance zero-sequence current control to suppress a phase-to-phase imbalance in DC-side voltages when compensating for unbalanced load. In this paper, actual EAF data is analyzed to reflect on the design of current controllers and a pioneering zero-sequence current controller with a superb transient performance is devised, which generates an imaginary -axis component from the presumed response of forwarded reference. Via simulation and experiments, the performance of the positive, negative, and zero-sequence current control of a cascaded H-bridge STATCOM for EAF is verified.

Design of Mover for LMTT based on Capstone Design (창의공학설계를 기반으로 한 LMTT용 이동체의 설계)

  • Han, Dong-Seop;An, Tae-Won;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.47-52
    • /
    • 2007
  • LMTT (Linear Motor based Transfer Technology), which is a new type transfer system used in the maritime container terminal for the port automation, is driven by PM LSM (Permanent Magnetic Linear Synchronous Motor), and largely consists of a controller, shuttle car, and rail. The shuttle car is divided into the frame part, the driving part, and wheels. Because the shuttle car is supported by four wheels in opposition to have five times length for the width of it, a larger deflection than other transfer system using the linear motor occurs. This deflection changes the gap between the mover and the stator, and then brings on an ununiform thrust force. So in this study, we dealt with the structural design for the mover of the shuttle car to generate the uniform thrust force for the efficient control of it. For the investigation, the thickness for each beam of the mover was adopted as design variables, the weight of the mover as objective function, and stress and deflection of the mover as constraint condition.

  • PDF

Study On the Sensorless PMSM Control Using the Superposition Theory (중첩의 정리를 이용한 PMSM의 센서리스제어에 관한 연구)

  • Park, Seong-Jun;Park, Han-Ung;Kim, Dae-Ung;Baek, Seung-Myeon;Lee, Man-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • This study presents a solution to control a Permanent Magnet Synchronous Motor without sensors based on the superposition principle. Because the proposed method of sensorless theory is very simple to compute the estimated angle, computing time to estimate the angle is shorter than other sensorless method. The use of this system yields enhanced operations, fewer system components, lower system cost, energy efficient control system design and increased efficiency. The performance of a sensorless architecture allows an intelligent approach to reduce the complete system costs of the digital motion control applications using cheaper electrical motors without sensors. This paper deals with an overview of sensorless solutions in PMSM control applications whereby the focus will be on the new controller without sensors and its applications.